The hepatobiliary disposition of xenobiotics may involve passive and/or active uptake, metabolism by cytochromes P450, and excretion of the parent compound and/or metabolite(s) into bile. Although in vitro systems have been used to evaluate these individual processes discretely, mechanistic in vitro studies of the sequential processes of uptake, metabolism, and biliary or basolateral excretion are limited. The current studies used sandwich-cultured (SC) rat hepatocytes combined with a comprehensive pharmacokinetic modeling approach to investigate the hepatobiliary disposition of terfenadine and fexofenadine, a model drug/metabolite pair. The metabolism of terfenadine and the biliary excretion of terfenadine and fexofenadine were determined in control and dexamethasone-treated SC rat hepatocytes. Dexamethasone (DEX) treatment increased the formation rates of the terfenadine metabolites azacyclonol and fexofenadine approximately 20- and 2-fold, respectively. The biliary excretion index (BEI) of fexofenadine, when generated by terfenadine metabolism, was not significantly different from the BEI of preformed fexofenadine (15 +/- 2% versus 19 +/- 2%, respectively). Pharmacokinetic modeling revealed that the rate constant for hepatocyte uptake was faster for terfenadine compared with preformed fexofenadine (2.5 versus 0.08 h(-1), respectively), whereas the biliary excretion rate constant for preformed fexofenadine exceeded that of terfenadine (0.44 versus 0.039 h(-1), respectively). Interestingly, the rate constants for basolateral excretion of terfenadine and fexofenadine were comparable (3.2 versus 1.9 h(-1), respectively) and increased only slightly with DEX treatment. These studies demonstrate the utility of the SC hepatocyte model, coupled with pharmacokinetic modeling, to evaluate the hepatobiliary disposition of generated metabolites.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.106.102616DOI Listing

Publication Analysis

Top Keywords

hepatobiliary disposition
16
pharmacokinetic modeling
16
rat hepatocytes
12
terfenadine fexofenadine
12
biliary excretion
12
preformed fexofenadine
12
drug/metabolite pair
8
comprehensive pharmacokinetic
8
sandwich-cultured rat
8
uptake metabolism
8

Similar Publications

Activation of pregnane X receptor sensitizes alcoholic steatohepatitis by transactivating fatty acid binding protein 4.

Acta Pharm Sin B

November 2024

Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.

Alcoholic steatohepatitis (ASH) is a liver disease characterized by steatosis, inflammation, and necrosis of the liver tissue as a result of excessive alcohol consumption. Pregnane X receptor (PXR) is a xenobiotic nuclear receptor best known for its function in the transcriptional regulation of drug metabolism and disposition. Clinical reports suggested that the antibiotic rifampicin, a potent human PXR activator, is a contraindication in alcoholics, but the mechanism was unclear.

View Article and Find Full Text PDF

Ischemia-reperfusion injury (IRI) is an intrinsic risk associated with liver transplantation. Ex vivo hepatic machine perfusion (MP) is an emerging organ preservation technique that can mitigate IRI, especially in livers subjected to prolonged warm ischemia time (WIT). However, a method to quantify the biological response to WIT during MP has not been established.

View Article and Find Full Text PDF

Introduction: The growing burden of an aging population has raised concerns about demands on healthcare systems and resources, particularly in the context of surgical and cancer care. Delirium can affect treatment outcomes and patient recovery. We sought to determine the prevalence of postoperative delirium among patients undergoing digestive tract surgery for malignant indications and to analyze the role of delirium on surgical outcomes.

View Article and Find Full Text PDF

Modulation of hepatic cellular tight junctions via coculture with cholangiocytes enables non-destructive bile recovery.

J Biosci Bioeng

May 2024

Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

Article Synopsis
  • Estimating how drugs and their metabolites are cleared from bile is essential for understanding liver function and possible interactions between drugs in humans.
  • Researchers explored a new way to analyze bile by coculturing human liver cancer cells (HepG2-NIAS) and cholangiocarcinoma cells (TFK-1) using a special membrane, which improved drug permeability compared to using only HepG2-NIAS cells.
  • The coculture not only increased the recovery of bile compounds without damaging cell structures, but also highlighted a promising method for more effective drug analysis in the lab.
View Article and Find Full Text PDF

The liver plays a central role in the biotransformation and disposition of endogenous molecules and xenobiotics. In addition to drug-metabolizing enzymes, transporter proteins are key determinants of drug hepatic clearance. Hepatic transporters are transmembrane proteins that facilitate the movement of chemicals between sinusoidal blood and hepatocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!