This review comprehensively evaluates the influence of gene-gene, gene-environment and multiple interactions on the risk of colorectal cancer (CRC). Methods of studying these interactions and their limitations have been discussed herein. There is a need to develop biomarkers of exposure and of risk that are sensitive, specific, present in the pathway of the disease, and that have been clinically tested for routine use. The influence of inherited variation (polymorphism) in several genes has been discussed in this review; however, due to study limitations and confounders, it is difficult to conclude which ones are associated with the highest risk (either individually or in combination with environmental factors) to CRC. The majority of the sporadic cancer is believed to be due to modification of mutation risk by other genetic and/or environmental factors. Micronutrient deficiency may explain the association between low consumption of fruit/vegetables and CRC in human studies. Mitochondrial modulation by dietary factors influences the balance between cell renewal and death critical in colon mucosal homeostasis. Both genetic and epigenetic interactions are intricately dependent on each other, and collectively influence the process of colorectal tumorigenesis. The genetic and environmental interactions present a good prospect and a challenge for prevention strategies for CRC because they support the view that this highly prevalent cancer is preventable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10590500600614295 | DOI Listing |
Int Immunopharmacol
January 2025
Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China; International Center for Allergy Research, Nanjing Medical University, Nanjing, China. Electronic address:
Background: The etiology of allergic rhinitis (AR), in which genetic and environmental factors are closely intertwined, has not yet been completely clarified. Programmed cell death 1 (PD-1) and its ligands (PD-L1 and PD-L2) regulate the immune and inflammatory responses during the development of immune-related and atopic diseases. To clarify the associations of genetic variants in PD-1, PD-L1 and PD-L2 with susceptibility to AR, gene-gene and gene-environment interactions were investigated.
View Article and Find Full Text PDFRespir Res
January 2025
Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, 150081, People's Republic of China.
Background: Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease, influenced by both environmental and genetic factors. Single nucleotide polymorphism (SNP) in the human genome may influence the risk of developing COPD and the response to treatment. We assessed the effects of gene polymorphism of inflammatory and immune-active factors and gene-environment interaction on risk of COPD in middle-aged and older Chinese individuals.
View Article and Find Full Text PDFNeuropsychopharmacol Hung
December 2024
Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary.
Background: Major depressive disorder (MDD) is a complex psychiatric condition significantly impacted by environmental stress and inflammation. Previous research suggests that stress-induced alterations in the blood-brain barrier (BBB) may allow pro-inflammatory cytokines like interleukin-6 (IL-6) to enter the brain, contributing to depression. Tumor necrosis factor-alpha (TNF-α) is another prominent cytokine implicated in depression, but its role in the context of BBB integrity and stress-mediated depression remains unclear.
View Article and Find Full Text PDFHum Genomics
December 2024
Department of Clinical Neurosciences, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania.
Neurodegenerative diseases present complex genetic architectures, reflecting a continuum from monogenic to oligogenic and polygenic models. Recent advances in multi-omics data, coupled with systems genetics, have significantly refined our understanding of how these data impact neurodegenerative disease mechanisms. To contextualize these genetic discoveries, we provide a comprehensive critical overview of genetic architecture concepts, from Mendelian inheritance to the latest insights from oligogenic and omnigenic models.
View Article and Find Full Text PDFFront Biosci (Schol Ed)
December 2024
Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia.
Background: Uterine fibroids (UF) is the most common benign tumour of the female reproductive system. We investigated the joint contribution of genome-wide association studies (GWAS)-significant loci and environment-associated risk factors to the UF risk, along with epistatic interactions between single nucleotide polymorphisms (SNPs).
Methods: DNA samples from 737 hospitalised patients with UF and 451 controls were genotyped using probe-based PCR for seven common GWAS SNPs: rs117245733 , rs547025 rs2456181 , rs7907606 , , rs58415480 , rs7986407 , and rs72709458 .
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!