1,25-Dihydroxyvitamin D(3) has a pivotal role in bone resorption and osteoclast activity. As activated macrophages are known to synthesise 1,25-dihydroxyvitamin D(3), this study examined whether pressure modulated its synthesis. Pressure and particles have been shown to increase synthesis of pro-resorptive cytokines and other factors by cultured macrophages. Human peripheral blood macrophages were isolated, cultured and exposed to pressure (similar to that found in the human joint) and/or particles. Synthesis of 1,25-dihydroxyvitamin D(3) by macrophages was assayed using high pressure liquid chromatography and in situ hybridization. Synthesis of 1,25-dihydroxyvitamin D(3) but not 24,25-dihydroxyvitamin D(3) was increased in macrophages under pressure. In situ hybridization demonstrated an increase in 1alpha-hydroxylase expression in response to pressure or particles and simultaneous exposure to both stimuli generated higher expression of 1alpha-hydroxylase. In conclusion, this is the first study to demonstrate that mechanical loading, in the form of pressure, stimulates 1,25-dihydroxyvitamin D(3) synthesis in human macrophages. These findings have implications for the in vivo situation, as they suggest that 1,25-dihydroxyvitamin D(3) could be one factor stimulating osteoclastic bone resorption in pathologies, such as arthritis or implant loosening, where intra-articular or intra-osseous pressure is raised or where wear particles interact with macrophages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biocel.2006.03.004 | DOI Listing |
Sci Rep
January 2025
School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang, 471003, China.
The application of high-pressure grinding rolls (HPGR) for ore crushing is considered to be one of the effective ways to save energy and reduce emissions in the ore processing industry. The crushing effect is directly determined by the forces of ore material during roll crushing. However, the mechanical state of ore material in roll crushing and the effect of roll structure, process parameters, feed particle size, on the force during the crushing of ore material needs to be expanded.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, JAPAN.
The tumor microenvironment characterized by heterogeneously organized vasculatures causes intra-tumoral heterogeneity of oxygen partial pressure at the cellular level, which cannot be measured by current imaging techniques. The intra-tumoral cellular heterogeneity may lead to a reduction of therapeutic effects of radiation. The purpose of this study was to investigate the effects of the heterogeneity on biological effectiveness of H-, He-, C-, O-, and Ne-ion beams for different oxygenation levels, prescribed dose levels, and cell types.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
The impact of animal-based food production on climate change drives the development of plant-based alternatives. We demonstrate the use of colloidal thermogelation on a real nanoemulsion system to create structured gels that could be of interest for thermo-mechanical processing of next-generation plant-based food applications. We use a commercial pea protein isolate (PPI) without further purification to stabilize a 20 vol% peanut oil-in-water nanoemulsion at pH = 7 by high-pressure homogenization (HPH) and demonstrate the temperature induced gelation behavior of the nanoemulsion as a function of the HPH processing parameters.
View Article and Find Full Text PDFBioprocess Biosyst Eng
January 2025
Cell Culture Development, Biogen, 5000 Davis Drive, Research Triangle Park, NC, 27709, USA.
Membrane fouling is a common and complex challenge with cell culture perfusion process in biopharmaceutical manufacturing that can have detrimental effects on the process performance. In this study, we evaluated a method to calculate the hollow fiber membrane resistance at different time points for water and supernatant. In addition, the number of subvisible particles of < 200 nm.
View Article and Find Full Text PDFChemSusChem
January 2025
Qingdao University, College of Chemistry and Chemical Engineering, 308 Ningxia Road, Qingdao, CHINA.
Polyurethane (PU), as a thermoset polymer, is extensively utilized in various applications, such as refrigerator foams, sponges, elastomers, shoes, etc. However, the recycling of post-consumed PU poses significant challenges due to its intricate and extensive crosslinking structures. Catalytic hydrogenation is one of the most effective methods for recycling PU waste, nevertheless, there is currently a lack for a hydrogenation catalyst that is both high-performing, recyclable, and cost-effective for breaking down post-consumed PU materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!