We have cloned the proteasome and the proteasome activating nucleotidase (PAN) genes from the mesophilic archaeon Methanosarcina mazei and produced the respective proteins in Escherichia coli cultures. The recombinant complexes were purified to homogeneity and characterized biochemically, structurally, and by mass spectrometry. We found that the degradation of Bodipy-casein by Methanosarcina proteasomes was activated by Methanosarcina PAN. Notably, the Methanosarcina PAN unfolded GFP-SsrA only in the presence of Methanosarcina proteasomes. Structural analysis by 2D averaging electron microscopy of negatively stained complexes displayed the typical structure for the proteasome, namely four-striped side-views and sevenfold-symmetric top-views, with 15 nm height and 11 nm diameter. The structural analysis of the PAN preparation revealed also four-striped side-views, albeit with a height of 18 nm and sixfold-symmetric top-views with a diameter of 15 nm, which corresponds most likely to a dimer of two hexameric complexes. Mass spectrometric analysis of both the Methanosarcina and the Methanocaldococcus PAN proteins indicated hexameric complexes. In summary, we performed a functional and structural characterization of the PAN and proteasome complexes from the archaeon M. mazei and described unique new structural and functional features.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jsb.2006.03.015 | DOI Listing |
JCI Insight
January 2025
Division of Nephrology, Department of Medicine, Vanderbildt University Medical Center, Nashville, United States of America.
Urinary obstruction causes injury to the renal medulla, impairing the ability to concentrate urine, and increasing the risk of progressive kidney disease. However, the regenerative capacity of the renal medulla after reversal of obstruction is poorly understood. To investigate this, we developed a mouse model of reversible urinary obstruction.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Laboratory of Genome Dynamics in the Immune, INSERM UMR 116, Équipe Labellisée LIGUE 2023, Paris, France.
Oncostatin M (OSM) is a cytokine with the unique ability to interact with both the OSM receptor (OSMR) and the leukemia inhibitory factor receptor (LIFR). On the other hand, OSMR interacts with IL31RA to form the interleukin-31 receptor. This intricate network of cytokines and receptors makes it difficult to understand the specific function of OSM.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Kowloon 999077, China.
Heterogeneous ice nucleation is a widespread phenomenon in nature. Despite extensive research on ice nucleation near biological antifreeze proteins, a probe for ice nucleation and growth processes at the atomic level is still lacking. Herein, we present simulation evidence of the heterogeneous ice nucleation process on the ice-binding surface (IBS) of the antifreeze protein (TmAFP).
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand.
Purpose: The purpose of this study was to develop a deep learning approach that restores artifact-laden optical coherence tomography (OCT) scans and predicts functional loss on the 24-2 Humphrey Visual Field (HVF) test.
Methods: This cross-sectional, retrospective study used 1674 visual field (VF)-OCT pairs from 951 eyes for training and 429 pairs from 345 eyes for testing. Peripapillary retinal nerve fiber layer (RNFL) thickness map artifacts were corrected using a generative diffusion model.
Proc Natl Acad Sci U S A
January 2025
Max Perutz Labs, Vienna Biocenter Campus, Vienna 1030, Austria.
RNA G-quadruplexes (rG4s), the four-stranded structures formed by guanine-rich RNA sequences, are recognized by regions in RNA-binding proteins (RBPs) that are enriched in arginine-glycine repeats (RGG motifs). Importantly, arginine and glycine are encoded by guanine-rich codons, suggesting that some RGG motifs may both be encoded by and interact with rG4s in autogenous messenger RNAs (mRNAs). By analyzing transcriptome-wide rG4 datasets, we show that hundreds of RGG motifs in humans are at least partly encoded by rG4s, with an increased incidence for longer RGG motifs (~10 or more residues).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!