Efficient, high-level expression of multiple genes is often difficult to achieve in retroviral vectors, due to positional effects affecting transcription of adjacent sequences. Here we describe the comparative analysis of different strategies for co-expressing two model cDNA sequences in the context of a second generation lentiviral vector system. A first option was based on the generation of a polycistronic construct by subcloning an internal ribosome entry site (IRES) sequence between tandem cDNAs. IRES-dependent translation of the cDNA placed downstream (3') of the first transgene was poor, and the protein was barely detectable in transduced cells. A similar result was obtained when both transgenes were placed under the transcriptional control of two independent internal promoters. When these independent transcription units were separated by the 5'HS4 chromatin insulator of the chicken beta-globin locus, a marked increase of the expression of the downstream protein was observed. Similarly, insertion of a polyadenylation sequence between the tandem transcription units fully restored - in transfection experiments - the expression of the downstream sequence, whose protein pattern was identical to the single-gene control, suggesting that in this specific construct transcriptional interference was the likely cause of the observed positional effects. These results indicate that chromatin insulator sequences can be useful molecular tools to overcome positional effects in the context of lentiviral vectors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jviromet.2006.04.003DOI Listing

Publication Analysis

Top Keywords

positional effects
16
comparative analysis
8
lentiviral vectors
8
multiple genes
8
sequence tandem
8
transcription units
8
chromatin insulator
8
expression downstream
8
analysis molecular
4
molecular strategies
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!