Molecular dynamics simulations on the tetracycline-repressor (TetR) protein, both in the absence of an inducer and complexed with the inducers tetracycline and 5a,6-anhydrotetracycline, show significant differences in the structures and dynamics of the induced and non-induced forms of the protein. Calpha-density-difference plots, low-frequency normal vibrations and inter-residue interaction energies all point to a common mechanism of induction. The inducer displaces Asp156 from the magnesium ion in the binding pocket, leading to a short cascade of rearrangements of salt bridges that results in the allosteric change. The increased flexibility of the induced form of the protein is suggested to contribute to the decrease in binding affinity to DNA on induction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2006.04.014DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
8
dynamics simulations
8
simulations tetracycline-repressor
8
mechanism induction
8
protein
4
tetracycline-repressor protein
4
protein mechanism
4
induction molecular
4
tetracycline-repressor tetr
4
tetr protein
4

Similar Publications

Abundant repressor binding sites in human enhancers are associated with the fine-tuning of gene regulation.

iScience

January 2025

Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.

The regulation of gene expression relies on the coordinated action of transcription factors (TFs) at enhancers, including both activator and repressor TFs. We employed deep learning (DL) to dissect HepG2 enhancers into positive (PAR), negative (NAR), and neutral activity regions. Sharpr-MPRA and STARR-seq highlight the dichotomy impact of NARs and PARs on modulating and catalyzing the activity of enhancers, respectively.

View Article and Find Full Text PDF

Introduction: HIV-1 exploits dendritic cells (DCs) to spread throughout the body via specific recognition of gangliosides present on the viral envelope by the CD169/Siglec-1 membrane receptor. This interaction triggers the internalization of HIV-1 within a structure known as the sac-like compartment. While the mechanism underlying sac-like compartment formation remains elusive, prior research indicates that the process is clathrin-independent and cell membrane cholesterol-dependent and involves transient disruption of cortical actin.

View Article and Find Full Text PDF

Active Ingredients and Potential Mechanism of Additive Sishen Decoction in Treating Rheumatoid Arthritis with Network Pharmacology and Molecular Dynamics Simulation and Experimental Verification.

Drug Des Devel Ther

January 2025

Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, People's Republic of China.

Background: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease in which macrophages produce cytokines that enhance inflammation and contribute to the destruction of cartilage and bone. Additive Sishen decoction (ASSD) is a widely used traditional Chinese medicine for the treatment of RA; however, its active ingredients and the mechanism of its therapeutic effects remain unclear.

Methods: To predict the ingredients and key targets of ASSD, we constructed "drug-ingredient-target-disease" and protein-protein interaction networks.

View Article and Find Full Text PDF

Molecular Epidemiology of Type F Among Diarrheal Patients and Virulence-Resistance Dynamics - 11 Provinces, China, 2024.

China CDC Wkly

January 2025

Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China.

Introduction: Type F () represents a significant pathogen in human gastrointestinal diseases, primarily through its gene encoding enterotoxin (CPE). This investigation examined the prevalence, antimicrobial resistance patterns, and genetic characteristics of Type F within the Chinese population.

Methods: The study analyzed 2,068 stool samples collected from 11 provincial hospitals in 2024.

View Article and Find Full Text PDF

Computational identification of novel natural inhibitors against triple mutant DNA gyrase A in fluoroquinolone-resistant Typhimurium.

Biochem Biophys Rep

March 2025

Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.

The rising resistance to fluoroquinolones in Typhimurium poses a significant global health challenge. This computational research addresses the pressing need for new therapeutic drugs by utilizing various computational tools to identify potential natural compounds that can inhibit the triple mutant DNA gyrase subunit A enzyme, which is crucial in fluoroquinolone resistance. Initially, the three-dimensional structure of the wild-type DNA gyrase A protein was modeled using homology modeling, and followed by mutagenesis to create the clinically relevant triple mutant (SER83PHE, ASP87GLY, ALA119SER) DNA gyrase A protein structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!