NAADP+ synthesis from cADPRP and nicotinic acid by ADP-ribosyl cyclases.

Biochem Biophys Res Commun

Department of Experimental Medicine, Section of Biochemistry, and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV/1, 16132 Genova, Italy.

Published: June 2006

ADP-ribosyl cyclases (ADPRCs) are present from lower Metazoa to mammals and synthesize the Ca2+-active (di)nucleotides cyclic ADP-ribose (cADPR), NAADP+, and ADP-ribose (ADPR), involved in the regulation of important cellular functions. NAADP+ can be synthesized by ADPRCs from NADP+ through a base-exchange reaction, which substitutes nicotinamide for nicotinic acid (NA). Here we demonstrate that ADPRCs from both lower and higher Metazoa (including human CD38) can also synthesize NAADP+ starting from 2'-phospho-cyclic ADP-ribose (cADPRP) and NA. Comparison, on the two substrates cADPRP and NADP+, of the relative rates of the reactions introducing NA and hydrolyzing/cyclizing the substrate, respectively, indicates that with all ADPRCs tested cADPRP is preferentially transformed into NAADP+, while NADP+ is preferentially cyclized or hydrolyzed to cADPRP/2'-phospho-ADP-ribose. cADPRP was detectable in retinoic acid-differentiated, CD38+ HL-60 cells, but not in undifferentiated, CD38- cells. These results suggest that cADPRP may be a NAADP+ precursor in ADPRC+ cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2006.04.096DOI Listing

Publication Analysis

Top Keywords

nicotinic acid
8
adp-ribosyl cyclases
8
adprcs lower
8
naadp+
6
cadprp
6
naadp+ synthesis
4
synthesis cadprp
4
cadprp nicotinic
4
acid adp-ribosyl
4
cyclases adp-ribosyl
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!