Cytochrome b gene structure and consequences for resistance to Qo inhibitor fungicides in plant pathogens.

Pest Manag Sci

Centre of Competence for Innovation in the Agro-environmental Sector (AGROINNOVA), University of Turin, via L. da Vinci 44, 10095 Grugliasco (TO), Italy.

Published: June 2006

The cytochrome b (cyt b) gene structure was characterized for different agronomically important plant pathogens, such as Puccinia recondita f sp tritici (Erikss) CO Johnston, P graminis f sp tritici Erikss and Hennings, P striiformis f sp tritici Erikss, P coronata f sp avenae P Syd & Syd, P hordei GH Otth, P recondita f sp secalis Roberge, P sorghi Schwein, P horiana Henn, Uromyces appendiculatus (Pers) Unger, Phakopsora pachyrhizi Syd & P Syd, Hemileia vastatrix Berk & Broome, Alternaria solani Sorauer, A alternata (Fr) Keissl and Plasmopara viticola (Berk & Curt) Berlese & de Toni. The sequenced fragment included the two hot spot regions in which mutations conferring resistance to QoI fungicides may occur. The cyt b gene structure of these pathogens was compared with that of other species from public databases, including the strobilurin-producing fungus Mycena galopoda (Pers) P Kumm, Saccharomyces cerevisiae Meyer ex Hansen, Venturia inaequalis (Cooke) Winter and Mycosphaerella fijiensis Morelet. In all rust species, as well as in A solani, resistance to QoI fungicides caused by the mutation G143A has never been reported. A type I intron was observed directly after the codon for glycine at position 143 in these species. This intron was absent in pathogens such as A alternata, Blumeria graminis (DC) Speer, Pyricularia grisea Sacc, Mycosphaerella graminicola (Fuckel) J Schröt, M fijiensis, V inaequalis and P viticola, in which resistance to QoI fungicides has occurred and the glycine is replaced by alanine at position 143 in the resistant genotype. The present authors predict that a nucleotide substitution in codon 143 would prevent splicing of the intron, leading to a deficient cytochrome b, which is lethal. As a consequence, the evolution of resistance to QoI fungicides based on G143A is not likely to evolve in pathogens carrying an intron directly after this codon.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.1236DOI Listing

Publication Analysis

Top Keywords

resistance qoi
16
qoi fungicides
16
gene structure
12
tritici erikss
12
plant pathogens
8
cyt gene
8
syd syd
8
directly codon
8
position 143
8
resistance
5

Similar Publications

Tan spot caused by is a severe threat to wheat production in all major wheat-growing regions. Sustainable tan spot control can be achieved by an integrated approach, including responsible management of fungicide sprays. The data about the sensitivity of to various fungicides in the Baltic Sea region are rare.

View Article and Find Full Text PDF

Cryo-EM Structures Reveal the Unique Binding Modes of Metyltetraprole in Yeast and Porcine Cytochrome Complex Enabling Rational Design of Inhibitors.

J Am Chem Soc

December 2024

State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China.

Cytochrome (complex III) represents a significant target for the discovery of both drugs and fungicides. Metyltetraprole (MET) is commonly classified as a quinone site inhibitor (QI) that combats the G143A mutated isolate, which confers high resistance to strobilurin fungicides such as pyraclostrobin (PYR). The binding mode and antiresistance mechanism of MET remain unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Frogeye leaf spot, traditionally a southern disease, is increasingly affecting soybeans in North Central USA, prompting a study on its population structure in Indiana.
  • Researchers identified 49 multi-locus genotypes (MLGs) from 234 isolates, grouping them into three clusters and confirming a balanced distribution of mating types across most counties.
  • The analysis revealed the dominance of one genotype (MLG1), associated with QoI-resistant isolates, and indicated significant linkage disequilibrium in the population, with implications for understanding the disease's spread and management.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates fungicide resistance in Alternaria alternata populations, specifically identifying the G143A mutation in cytochrome b (cytb) linked to resistance in Brazilian orchards.
  • Using techniques like confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM), researchers examined the behavior of resistant (QoI-R) and sensitive (QoI-S) isolates when exposed to the QoI fungicide pyraclostrobin.
  • Findings indicate that QoI-S conidia produced reactive oxygen species (ROS) and showed cell death, while QoI-R conidia did not, illustrating distinct responses between the two phenotypes during interactions with the fungicide.
View Article and Find Full Text PDF

Glomerella leaf spot (GLS), Glomerella fruit rot (GFR) and apple bitter rot (ABR), caused by Colletotrichum spp. are amongst the most devastating apple diseases in the southeastern United States. While several species have been identified as causal pathogens of GLS, GFR, and ABR, their relative frequency and fungicide sensitivity status in the southeastern U.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!