Experiments with sciatic nerve lesions and spinal cord contusion injury demonstrate that the retinoic acid (RA) signaling cascade is activated by these traumatic events. In both cases the RA-synthesizing enzyme is RALDH-2. In the PNS, lesions cause RA-induced gene transcription, intracellular translocation of retinoid receptors, and increased transcription of CRBP-I, CRABP-II, and retinoid receptors. The activation of RARbeta appears to be responsible for neurotrophic and neuritogenic effects of RA on dorsal root ganglia and embryonic spinal cord. While the physiological role of RA in the injured nervous system is still under investigation three domains of functions are suggested: (1) neuroprotection and support of axonal growth, (2) modulation of the inflammatory reaction by microglia/macrophages, and (3) regulation of glial differentiation. Few studies have been performed to support nerve regeneration with RA signals in vivo, but a large number of experiments with neuronal and glial cell cultures and spinal cord explants point to beneficial effects of RA, so that future therapeutic approaches will likely focus on the activation of RA signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/neu.20238 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!