Urothelial barrier function is maintained by apical membrane plaques and intercellular tight junctions (TJ). Little is known about the composition and regulation of TJ expression in human urothelium. In this study, we have characterised the expression of TJ components in situ and their regulation in an in vitro model of differentiating normal human urothelial (NHU) cells. In normal ureteric urothelium in situ, there was a differentiation-associated profile of claudins 3, 4, 5, 7, ZO1 and occludin proteins. Proliferating NHU cells in vitro expressed predominantly claudin 1 protein and transcripts for claudins 1-5 and 7. Following induction of differentiation by pharmacological activation of PPARgamma and blockade of EGFR, there was de novo expression of claudin 3 mRNA and protein and downregulation of claudin 2 transcription. There was also a massive increase in expression of claudin 4 and 5 proteins which was due to inhibition of proteasomal degradation of claudin 4 and consequential stabilisation of the claudin 5 heterodimerisation partner. NHU cell differentiation was accompanied by relocalisation of TJ proteins to intercellular junctions. The differentiation-associated development of TJ formation in vitro reflected the stage-related TJ expression seen in situ. This was distinct from changes in TJ composition of NHU cells mediated by increasing the calcium concentration of the medium. Our results imply a role for PPARgamma and EGFR signalling pathways in regulating TJ formation in NHU cells and support the hypothesis that TJ development is an integral part of the urothelial differentiation programme.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1522040 | PMC |
http://dx.doi.org/10.1002/jcp.20676 | DOI Listing |
J Anim Sci
January 2024
Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
Reprod Domest Anim
October 2024
Cellular Reprogramming Laboratory, School of Biotechnology, International University, Ho Chi Minh City, Vietnam.
Assisted reproductive technologies (ART) play a crucial role in conserving threatened wildlife species such as Bos gaurus. ART requires a large number of mature oocytes, and small antral follicles (SAFs) in the ovary are often used to obtain abundant sources of bovine oocytes. However, oocytes from SAFs often experience difficulty completing maturation and obtaining high quality and quantity of blastocyst formation compared to fully grown oocytes.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
Herein, we present an innovative and atom-efficient synthesis of trimethine cyanines (Cy3) using formaldehyde (FA) as a single-carbon reagent. The widespread application of Cy3 dyes in bioimaging and genomics/proteomics is often limited by synthetic routes plagued by low atom economy and substantial side-product formation. Through systematic investigation, we have developed a practical and efficient synthetic pathway for both symmetrical and unsymmetrical Cy3 derivatives, significantly minimizing resource utilization.
View Article and Find Full Text PDFCancer Gene Ther
October 2024
Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
Centrosome amplification (CA), an abnormal increase in the number of centrosomes in the cell, is a recurrent phenomenon in lung and other malignancies. Although CA promotes tumor development and progression by inducing genomic instability (GIN), it also induces mitotic stress that jeopardizes cellular integrity. CA leads to the formation of multipolar mitotic spindles that can cause lethal chromosome segregation errors.
View Article and Find Full Text PDFProteomics
August 2024
Advanced Technology and Biology Division, the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
Thermal proteome profiling (TPP) is a powerful tool for drug target deconvolution. Recently, data-independent acquisition mass spectrometry (DIA-MS) approaches have demonstrated significant improvements to depth and missingness in proteome data, but traditional TPP (a.k.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!