Do continuous subthreshold oscillations in membrane potential within an electrically coupled network depend on gap junctional coupling? For the inferior olive (IO), modeling and developmental studies suggested that the answer is yes, although physiological studies of connexin36 knock-out mice lacking electrical coupling suggested that the answer is no. Here we addressed the question differently by using a lentivirus-based vector to express, in the IO of adult rats, a single amino acid mutation of connexin36 that disrupts the intracellular trafficking of wild-type connexin36 and blocks gap junctional coupling. Confocal microscopy of green fluorescence protein-labeled dendrites revealed that the mutant connexin36 prevented wild-type connexin36 from being expressed in dendritic spines of IO neurons. Intracellular recordings from lentivirally transduced IO networks revealed that robust and continuous subthreshold oscillations require gap junctional coupling of IO neuron somata within 40 microm of one another. Topological studies indicated that the minimal coupled network for supporting such oscillations may be confined to the dendritic arbor of a single IO neuron. Occasionally, genetically uncoupled IO neurons showed transient oscillations; however, these were not sustained longer than 3 s and were 69% slower and 71% smaller than the oscillations of normal IO neurons, a finding replicated with carbenoxolone, a pharmacological antagonist of gap junctions. The experiments provided the first direct evidence that gap junctional coupling between neurons, specifically mediated by connexin36, allows a continuous network oscillation to emerge from a population of weak and episodic single-cell oscillators. The findings are discussed in the context of the importance of gap junctions for cerebellar rhythms involved in movement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6674237 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.0146-06.2006 | DOI Listing |
ACS Nano
January 2025
School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, China.
Mitochondrial transplantation is a significant therapeutic approach for addressing mitochondrial dysfunction in patients with spinal cord injury (SCI), yet it is limited by rapid mitochondrial deactivation and low transfer efficiency. Here, high-quality mitochondria microfactories (HQ-Mitofactories) were constructed by anchoring Prussian blue nanoenzymes onto mesenchymal stem cells for effective mitochondrial transplantation to treat paralysis from SCI. Notably, the results demonstrated that HQ-Mitofactories could continuously produce vitality-boosting mitochondria with highly interconnected and elongated network structures under oxidative stress by scavenging excessive ROS.
View Article and Find Full Text PDFBone Res
January 2025
Department of Endodontology, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA.
Craniometaphyseal dysplasia (CMD), a rare craniotubular disorder, occurs in an autosomal dominant (AD) or autosomal recessive (AR) form. CMD is characterized by hyperostosis of craniofacial bones and metaphyseal flaring of long bones. Many patients with CMD suffer from neurological symptoms.
View Article and Find Full Text PDFNeurotherapeutics
January 2025
Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile. Electronic address:
Acute brain injuries (ABIs) encompass a broad spectrum of primary injuries such as ischemia, hypoxia, trauma, and hemorrhage that converge into secondary injury where some mechanisms show common determinants. In this regard, astroglial connexin and pannexin channels have been shown to play an important role. These channels are transmembrane proteins sharing similar topology and form gateways between adjacent cells named gap junctions (GJs) and pores into unopposed membranes named hemichannels (HCs).
View Article and Find Full Text PDFStem Cells
January 2025
Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe city, Hyogo 650-0017, Japan.
Aims: Bone marrow mononuclear cells (BM-MNCs) are a rich source of hematopoietic stem cells that have been widely used in experimental therapies for patients with various diseases, including fractures.Activation of angiogenesis is believed to be one of the major modes of action of BM-MNCs; however, the essential mechanism by which BM-MNCs activate angiogenesis remains elusive. This study aimed to demonstrate that BM-MNCs promote bone healing by enhancing angiogenesis through direct cell-to-cell interactions via gap junctions, in addition to a previously reported method.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemical and Pharmaceutical Sciences, University of Trieste Via L. Giorgieri 1 Trieste 34127 Italy
Electrical performances of a biphenyl-derived amido Schiff base ligand L and its dinuclear Al(iii) complex (complex 1) were investigated in a metal-semiconductor (MS) junction. Electrical studies revealed that complex 1 significantly enhanced the electrical conductivity and improved the characteristics of a Schottky barrier diode (SBD). The - characteristics demonstrated that complexation of ligand L with Al(iii) ion increased the conductivity by two orders of magnitude (conductivity of L = 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!