Methamphetamine administration reduces hippocampal vesicular monoamine transporter-2 uptake.

J Pharmacol Exp Ther

Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Skaggs Hall, Rm. 201, Salt Lake City, UT 84112, USA.

Published: August 2006

Repeated high-dose injections of methamphetamine (METH) rapidly decrease dopamine uptake by the vesicular monoamine transporter-2 (VMAT-2) associated with dopaminergic nerve terminals, as assessed in nonmembrane-associated vesicles purified from striata of treated rats. The purpose of this study was to determine whether METH similarly affects vesicular uptake in the hippocampus; a region innervated by both serotonergic and noradrenergic neurons and profoundly affected by METH treatment. Results revealed that repeated high-dose METH administrations rapidly (within 1 h) reduced hippocampal vesicular dopamine uptake, as assessed in vesicles purified from treated rats. This reduction was likely associated with serotonergic nerve terminals because METH did not further reduce vesicular monoamine uptake in para-chloroamphetamine-lesioned animals. Pretreatment with the serotonin transporter inhibitor fluoxetine blocked both this acute effect on VMAT-2 and the decrease in serotonin content observed 7 days after METH treatment. In contrast, there was no conclusive evidence that METH affected vesicular dopamine uptake in noradrenergic neurons or caused persistent noradrenergic deficits. These findings suggest a link between METH-induced alterations in serotonergic hippocampal vesicular uptake and the persistent hippocampal serotonergic deficits induced by the stimulant.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.105.099200DOI Listing

Publication Analysis

Top Keywords

hippocampal vesicular
12
vesicular monoamine
12
dopamine uptake
12
monoamine transporter-2
8
repeated high-dose
8
nerve terminals
8
vesicles purified
8
treated rats
8
meth vesicular
8
vesicular uptake
8

Similar Publications

Vascular cognitive impairment and dementia (VCID), resulting from chronic cerebral hypoperfusion, represent the second most prevalent form of dementia globally. Aerobic exercise is widely acknowledged as an effective intervention for various cognitive disorders. This study utilized a bilateral common carotid artery stenosis (BCAS) model to investigate whether aerobic exercise promotes cognitive recovery through the Annexin-A1 (ANXA1)/mitogen-activated protein kinase (MAPK) axis in BCAS mice.

View Article and Find Full Text PDF

Background: Kisspeptin (KP) signaling in the brain is defined by the anatomical distribution of KP-producing neurons, their fibers, receptors, and connectivity. Technological advances have prompted a re-evaluation of these chemoanatomical aspects, originally studied in the early years after the discovery of KP and its receptor We have previously characterized(1) seven KP neuronal populations in the mouse brain at the mRNA level, including two novel populations, and examined their short-term response to gonadectomy.

Methods: In this study, we mapped KP fiber distribution in rats and mice using immunohistochemistry under intact and short- and long-term post-gonadectomy conditions.

View Article and Find Full Text PDF

Sleep fragmentation (SF) is increasingly recognized as a contributing factor to postoperative cognitive dysfunction (POCD). Given the critical roles of somatostatin (SST) interneurons, associated gamma-aminobutyric acid (GABA)ergic neurotransmitters, and hippocampal perfusion in sleep-related cognition, this study examined changes in these mechanisms in preoperative SF affecting POCD induced by anesthesia/surgery in aged male mice. The Morris water maze (MWM), novel object recognition (NOR), and Y maze tests were utilized to evaluate POCD.

View Article and Find Full Text PDF

Inhibition of IRAP Enhances the Expression of Pro-Cognitive Markers Drebrin and MAP2 in Rat Primary Neuronal Cells.

Int J Mol Sci

November 2024

The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, Biomedical Centre, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden.

The insulin-regulated aminopeptidase (IRAP; oxytocinase) is part of the M1 aminopeptidase family and is highly expressed in many tissues, including the neocortex and hippocampus of the brain. IRAP is involved in various physiological functions and has been identified as a receptor for the endogenous hexapeptide Angiotensin IV (Ang IV). The binding of Ang IV inhibits the enzymatic activity of IRAP and has been proven to enhance learning and memory in animal models.

View Article and Find Full Text PDF
Article Synopsis
  • - The study examines how synaptic changes in neuronal circuits may underlie memory storage, focusing on the structural evidence for synaptic engrams at the hippocampal mossy fiber synapse.
  • - Researchers used a combination of chemical potentiation, functional recordings, and advanced microscopy techniques to assess the effects of forskolin on synaptic transmission and structure.
  • - Findings revealed that forskolin increased both the number of readily releasable vesicles and their proximity to priming proteins, suggesting that structural reorganization at synaptic sites could correlate with learning and memory processes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!