Sonic Hedgehog (SHH) is one of the most intensively studied genes in developmental biology. It is a highly conserved gene, found in species as diverse as arthropods and mammals. The mammalian SHH encodes a signaling molecule that plays a central role in developmental patterning, especially of the nervous system and the skeletal system. Here, we show that the molecular evolution of SHH is markedly accelerated in primates relative to other mammals. We further show that within primates, the acceleration is most prominent along the lineage leading to humans. Finally, we show that the acceleration in the lineage leading to humans is coupled with signatures of adaptive evolution. In particular, the lineage leading to humans is characterized by a rampant and statistically highly non-random gain of serines and threonines, residues that are potential substrates of post-translational modifications. This suggests that SHH might have evolved more complex post-translational regulation in the lineage leading to humans. Collectively, these findings implicate SHH as a potential contributor to the evolution of primate- or human-specific morphological traits in the nervous and/or skeletal systems and provide the impetus for additional studies aimed at identifying the primate- or human-specific functions of this key development gene.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddl123DOI Listing

Publication Analysis

Top Keywords

lineage leading
16
leading humans
16
sonic hedgehog
8
key development
8
development gene
8
molecular evolution
8
primate- human-specific
8
shh
5
hedgehog key
4
gene experienced
4

Similar Publications

Patellar dysplasia (PD) can cause patellar dislocation and subsequent osteoarthritis (OA) development. Herein, a novel ABCA6 mutation contributing to a four-generation family with familiar patellar dysplasia (FPD) is identified. In this study, whole exome sequencing (WES) and genetic linkage analysis across a four-generation lineage presenting with six cases of FPD are conducted.

View Article and Find Full Text PDF

Youthful Stem Cell Microenvironments: Rejuvenating Aged Bone Repair Through Mitochondrial Homeostasis Remodeling.

Adv Sci (Weinh)

January 2025

Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Extracellular matrix (ECM) derived from mesenchymal stem cells regulates antioxidant properties and bone metabolism by providing a favorable extracellular microenvironment. However, its functional role and molecular mechanism in mitochondrial function regulation and aged bone regeneration remain insufficiently elucidated. This proteomic analysis has revealed a greater abundance of proteins supporting mitochondrial function in the young ECM (Y-ECM) secreted by young bone marrow-derived mesenchymal stem cells (BMMSCs) compared to the aged ECM (A-ECM).

View Article and Find Full Text PDF

Unveiling an ancient whole-genome duplication event in Stentor, the model unicellular eukaryotes.

Sci China Life Sci

January 2025

Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.

Whole-genome duplication (WGD) events are widespread across eukaryotes and have played a significant role in moulding the genetic architectures of diverse organisms. In the present study, the newly sequenced genome of a giant ciliated protist, Stentor roeselii, provides an opportunity for the analysis of the collinearity and retention of reciprocal best-hit genes between two Stentor species. As a main result, we have unveiled a previously undetected ancient WGD event shaping the genome of its congener, Stentor coeruleus, a model protist used in cytological and evolutionary studies.

View Article and Find Full Text PDF

Breast Morphogenesis: From Normal Development to Cancer.

Adv Exp Med Biol

January 2025

Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.

The human breast gland is composed of branching epithelial ducts that culminate in milk-producing units known as terminal duct lobular units (TDLUs). The epithelial compartment comprises an inner layer of luminal epithelial cells (LEP) and an outer layer of contractile myoepithelial cells (MEP). Both LEP and MEP arise from a common stem cell population.

View Article and Find Full Text PDF

Targeting MXD1 sensitises pancreatic cancer to trametinib.

Gut

January 2025

State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China

Background: The resistance of pancreatic ductal adenocarcinoma (PDAC) to trametinib therapy limits its clinical use. However, the molecular mechanisms underlying trametinib resistance in PDAC remain unclear.

Objective: We aimed to illustrate the mechanisms of resistance to trametinib in PDAC and identify trametinib resistance-associated druggable targets, thus improving the treatment efficacy of trametinib-resistant PDAC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!