Previous studies have argued that, given the AT-rich nature of stop codons, the length and CG% of coding sequences (CDSs) should be positively correlated. This prediction is generally supported empirically by prokaryotic genomes. However, the correlation is weak for a number of species, with 4 species showing a negative correlation. Here we formulate a more general hypothesis incorporating selection against cytosine (C) usage to explain the lack of strong positive correlation between the length and GC% of CDSs. Two factors contribute to the selection against C usage in long CDSs. First, C is the least abundant nucleotide in the cell, and a long CDS should have fewer Cs to increase transcription efficiency. Second, C is prone to mutation to U/T and selection for increased reliability should reduce C usage in long CDSs. Empirical data from prokaryotic genomes lend strong support for this new hypothesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/molbev/msl012 | DOI Listing |
iScience
January 2025
Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA.
T7 RNA polymerase (RNAP) has enabled orthogonal control of gene expression and recombinant protein production across diverse prokaryotic host chassis organisms for decades. However, the absence of 5' methyl guanosine caps on T7 RNAP-derived transcripts has severely limited its utility and widespread adoption in eukaryotic systems. To address this shortcoming, we evolved a fusion enzyme combining T7 RNAP with the single subunit capping enzyme from African swine fever virus using .
View Article and Find Full Text PDFEnviron Microbiome
January 2025
Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
Background: Viruses that infect prokaryotes (phages) constitute the most abundant group of biological agents, playing pivotal roles in microbial systems. They are known to impact microbial community dynamics, microbial ecology, and evolution. Efforts to document the diversity, host range, infection dynamics, and effects of bacteriophage infection on host cell metabolism are extremely underexplored.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
Technology Park of Sardinia, Bioecopest Srl, SP 55 Km 8.400, Tramariglio, Alghero, SS, Italy.
Background: The increasing availability of sequenced genomes has enabled comparative analyses of various organisms. Numerous tools and online platforms have been developed for this purpose, facilitating the identification of unique features within selected organisms. However, choosing the most appropriate tools can be unclear during the initial stages of analysis, often requiring multiple attempts to match the specific characteristics of the data.
View Article and Find Full Text PDFProkaryote evolution is driven in large part by the incessant arms race with viruses. Genomic investments in antivirus defense can be coarsely classified into two categories, immune systems that abrogate virus reproduction resulting in clearance, and altruistic programmed cell death (PCD) systems. Prokaryotic defense systems are enormously diverse, as revealed by an avalanche of recent discoveries, but the basic ecological determinants of defense strategy remain poorly understood.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Shizishan Road No.1, Hongshan District, 430070 Wuhan, China.
Primase-polymerases (PrimPols) play divergent functions from DNA replication to DNA repair in all three life domains. In archaea and bacteria, numerous and diverse PPs are encoded by mobile genetic elements (MGEs) and act as the replicases for their MGEs. However, their varying activities and functions are not fully understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!