A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The effect of chitosan and PVDF substrates on the behavior of embryonic rat cerebral cortical stem cells. | LitMetric

The effect of chitosan and PVDF substrates on the behavior of embryonic rat cerebral cortical stem cells.

Biomaterials

Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan.

Published: September 2006

In this study, the behavior of neural stem cells from embryonic rat cerebral cortex were compared on the chitosan and poly(vinylidene fluoride) (PVDF) substrates at single-cell and neurosphere level. It was found that chitosan and PVDF substrates inhibited the proliferation and differentiation of single neural stem cells. It seemed that single-cell cultures on both substrates show cells remained dormant. However, neurospheres could exhibit different or similar behavior on these two substrates, which is dependent on the presence or absence of serum. More cells migrated outside from the neurospheres and longer processes extended from differentiated cells on chitosan than on PVDF when neurospheres were cultured in the serum-free medium. On the contrary, when serum was added to the culture system, chitosan and PVDF could induce the neurosphere-forming cells into an extensive cellular substratum of protoplasmic cells upon which process-bearing cells spread. In addition, based on the immunocytochemical analysis, the percentages of differentiated cell phenotypes of neurospheres cultured on chitosan and PVDF substrates became similar in the presence of serum. Therefore, it is reasonable to suggest that biomaterials may stimulate or inhibit the proliferation and differentiation of neural stem cells according to the complex environmental conditions. The information presented here should be useful for the development of biomaterials to regulate the preservation, proliferation, and differentiation of neural stem cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2006.04.021DOI Listing

Publication Analysis

Top Keywords

chitosan pvdf
20
stem cells
20
pvdf substrates
16
neural stem
16
proliferation differentiation
12
cells
11
embryonic rat
8
rat cerebral
8
neurospheres cultured
8
differentiation neural
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!