[Biological evolution and ancient DNA].

Med Sci (Paris)

Muséum National d'Histoire Naturelle, Département Histoire de la Terre, UMR 5143 CNRS, Paléobiodiversité, 57, rue Cuvier, 75231 Paris Cedex 05, France.

Published: May 2006

AI Article Synopsis

  • Ancient DNA studies have matured significantly over the past 20 years, overcoming initial limitations in data and technology that previously hindered research and led to dubious conclusions.
  • Recent advancements have enabled the sequencing of entire genomes, such as that of the woolly mammoth, enhancing the accuracy and scope of findings in paleogenetics.
  • These developments contribute to our understanding of the diversification and extinction of Ice Age megafauna and the domestication processes of various species, highlighting the field's growing relevance in evolutionary biology.

Article Abstract

Twenty years after the advent of ancient DNA studies, this discipline seems to have reached the maturity formerly lacking to the fulfilment of its objectives. In its early development paleogenetics, as it is now acknowledged, had to cope with very limited data due to the technical limitations of molecular biology. It led to phylogenetic assumptions often limited in their scope and sometimes non-focused or even spurious results that cast the reluctance of the scientific community. This time seems now over and huge amounts of sequences have become available which overcome the former limitations and bridge the gap between paleogenetics, genomics and population biology. The recent studies over the charismatic woolly mammoth (independent sequencing of the whole mitochondrial genome and of millions of base pairs of the nuclear genome) exemplify the growing accuracy of ancient DNA studies thanks to new molecular approaches. From the earliest publications up to now, the number of mammoth nucleotides was multiplied by 100,000. Likewise, populational approaches of ice-age taxa provide new historical scenarios about the diversification and extinction of the Pleistocene megafauna on the one hand, and about the processes of domestication of animal and vegetal species by Man on the other. They also shed light on the differential structure of molecular diversity between short-term populational research (below 2 My) and long-term (over 2 My) phylogenetic approaches. All those results confirm the growing importance of paleogenetics among the evolutionary biology disciplines.

Download full-text PDF

Source
http://dx.doi.org/10.1051/medsci/2006225502DOI Listing

Publication Analysis

Top Keywords

ancient dna
8
dna studies
8
[biological evolution
4
evolution ancient
4
ancient dna]
4
dna] twenty
4
twenty years
4
years advent
4
advent ancient
4
studies discipline
4

Similar Publications

The Arabian Peninsula is considered the initial site of historic human migration out of Africa. The modern-day indigenous Arabians are believed to be the descendants who remained from the ancient split of the migrants into Eurasia. Here, we investigated how the population history and cultural practices such as endogamy have shaped the genetic variation of the Saudi Arabians.

View Article and Find Full Text PDF

Analysis of ancient desiccated feces - termed paleofeces or coprolites - can unlock insights into the lives of ancient people. We collected desiccated feces from caves in the Rio Zape Valley in Mexico (725-920 CE). First, we extracted DNA with methods previously optimized for paleofeces.

View Article and Find Full Text PDF

As the field of ancient DNA research continues to evolve and produce significant discoveries, it is important to address the crucial limitations it still faces. Under conducive conditions, DNA can persist for thousands of years within human skeletal remains, but, as excavation occurs, the environment abruptly changes, often leading to the loss of DNA and valuable genetic information. Proper storage procedures are needed to mediate DNA degradation and maintain sample integrity.

View Article and Find Full Text PDF

This short review bridges two biological fields: ribosomes and nucleosomes-two nucleoprotein assemblies that, along with many viruses, share proteins featuring long filamentous segments at their N- or C-termini. A central hypothesis is that these extensions and tails perform analogous functions in both systems. The evolution of these structures appears closely tied to the emergence of regulatory networks and signaling pathways, facilitating increasingly complex roles for ribosomes and nucleosome alike.

View Article and Find Full Text PDF

Exploring the Potential of Genome-Wide Hybridization Capture Enrichment for Forensic DNA Profiling of Degraded Bones.

Genes (Basel)

December 2024

Australian Centre for Ancient DNA, The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5000, Australia.

Unlabelled: In many human rights and criminal contexts, skeletal remains are often the only available samples, and they present a significant challenge for forensic DNA profiling due to DNA degradation. Ancient DNA methods, particularly capture hybridization enrichment, have been proposed for dealing with severely degraded bones, given their capacity to yield results in ancient remains.

Background/objectives: This paper aims to test the efficacy of genome-wide capture enrichment on degraded forensic human remains compared to autosomal STRs analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!