The effect of lithium chloride on granulocyte-macrophage progenitor cells (CFU-GM) and clonogenic leukaemic blasts (CFU-L) in the cultures in vitro.

Arch Immunol Ther Exp (Warsz)

Department of Clinical Pharmacology, Copernicus Hospital, Medical Academy, Lódź, Poland.

Published: November 1992

The influence of lithium chloride on the proliferation of normal granulocyte-macrophage progenitor cells (CFU-GM) and clonogenic blasts (CFU-L) from patients with acute myeloid leukaemia in the semisolid cultures in vitro was investigated. It was observed that while lithium chloride with the concentration of 2 mmol/l increases the number of CFU-GM colonies, it does not increase the number of CFU-L colonies and clusters. Our studies indicate that lithium salts can be used for the treatment of patients with acute myeloid leukaemia after intensive chemotherapy.

Download full-text PDF

Source

Publication Analysis

Top Keywords

lithium chloride
12
granulocyte-macrophage progenitor
8
progenitor cells
8
cells cfu-gm
8
cfu-gm clonogenic
8
blasts cfu-l
8
cultures vitro
8
patients acute
8
acute myeloid
8
myeloid leukaemia
8

Similar Publications

Direct Cross-Couplings of Aryl Nonaflates with Aryl Bromides under Nickel Catalysis.

J Org Chem

January 2025

Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.

The direct cross-couplings of aryl nonaflates with aryl bromides could be successfully accomplished by utilizing nickel as the catalyst, magnesium as the metal mediator, and lithium chloride as the additive. The reactions proceeded efficiently in THF at room temperature to produce the desired biaryls in moderate to good yields, showing both a reasonable substrate scope and functional group tolerance. Additionally, an equally good performance could be realized when the reaction was subjected to scale-up synthesis.

View Article and Find Full Text PDF

High-Conductivity, Self-Healing, and Adhesive Ionic Hydrogels for Health Monitoring and Human-Machine Interactions Under Extreme Cold Conditions.

Adv Sci (Weinh)

January 2025

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Ionic conductive hydrogels (ICHs) are emerging as key materials for advanced human-machine interactions and health monitoring systems due to their unique combination of flexibility, biocompatibility, and electrical conductivity. However, a major challenge remains in developing ICHs that simultaneously exhibit high ionic conductivity, self-healing, and strong adhesion, particularly under extreme low-temperature conditions. In this study, a novel ICH composed of sulfobetaine methacrylate, methacrylic acid, TEMPO-oxidized cellulose nanofibers, sodium alginate, and lithium chloride is presented.

View Article and Find Full Text PDF

The successful design and deployment of next-generation nuclear technologies heavily rely on thermodynamic data for relevant molten salt systems. However, the lack of accurate force fields and efficient methods has limited the quality of thermodynamic predictions from atomistic simulations. Here we propose an efficient free energy framework for computing chemical potentials, which is the central free energy quantity behind many thermodynamic properties.

View Article and Find Full Text PDF

A paper-based potentiometric sensor integrated with a polymeric hydrogel has been developed for sodium ion (Na) determination in human urine. The construction of an all-solid-state ion selective electrode (s-ISE) and an all-solid-state reference electrode (s-RE) on a photo paper substrate was achieved using an inkjet printing method. For s-ISE fabrication, carbon nanotubes (CNTs) and gold nanoparticles (AuNPs) were printed on the substrate as a nanocomposite solid contact.

View Article and Find Full Text PDF

Nanocellulose-toughened super-stretchable ionic conductive gel fibers for wearable strain sensors.

Int J Biol Macromol

January 2025

College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China. Electronic address:

In recent years, conductive gel materials have attracted extensive attention in the field of flexible electronics because of their excellent elasticity. When constructed as gel fibers, they can adapt to greater deformation, be woven, and be assembled with fabrics to make wearable smart devices without compromising comfort. However, gel fibers reported often exhibit insufficient mechanical properties and poor adaptability to different environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!