L-Arginine is the substrate for nitric oxide synthesis and may enter cells by the y+ and y+ L transport systems. Peritoneal membrane characteristics may depend on vascular function and the L-arginine-nitric oxide pathway. In a cross-sectional study, we evaluated erythrocyte L-arginine uptake in stable peritoneal dialysis (PD) patients with various categories of peritoneal transport function. We used 14C as a marker and N-ethyl-maleimide as an inhibitor of the y+ system to measure maximal uptake capacity (Vma in ulmol/L cell/h) and the half-saturation constant (Km in micromol/L) in erythrocytes. The sample consisted of 41 patients (mean age: 50 +/- 17 years; 5 with diabetes; 18 men). Mean dialysate-toplasma creatinine (D/P(Cr)) was 0.62 +/- 0.14. Peritoneal membrane transport was classified as high, high-average, low-average, or low in 10, 11, 11, and 9 patients, respectively. Mean y+ L Vmax, was 208 +/- 111 micromol/L cell/h, 494 +/- 893 micromol/L cell/h, 222 +/- 59 micromol/L cell/h, and 193 +/- 63 umol/L cell/h [p = 0.404, analysis of variance (ANOVA)] for the high, high-average, low-average, and low transporters respectively. Similarly, mean y+ Vmax was 963 +/- 1034 micromol/L cell/h 843 +/- 366 micromol/L cell/h, 639 +/- 254 micromol/L cell/h, and 774 +/- 378 micromol/L cell/h (p = 0.647, ANOVA). As with Vmax, the y+ L Km and y+ Km values were not significantly different between the various peritoneal transport categories. A negative correlation was observed between y+ Vmax and Kt/V (r = -0.393, p = 0.011). Erythrocyte uptake of L-arginine does not vary with peritoneal membrane transport characteristics, but maximal L-arginine uptake capacity is higher in patients with a lower Kt/V.
Download full-text PDF |
Source |
---|
Adv Perit Dial
June 2006
Programa de Pós-graduação em Medicina e Ciências da Saúde (Nefrologia), Laboratório de Nefrologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.
L-Arginine is the substrate for nitric oxide synthesis and may enter cells by the y+ and y+ L transport systems. Peritoneal membrane characteristics may depend on vascular function and the L-arginine-nitric oxide pathway. In a cross-sectional study, we evaluated erythrocyte L-arginine uptake in stable peritoneal dialysis (PD) patients with various categories of peritoneal transport function.
View Article and Find Full Text PDFAnn Nutr Metab
October 1999
Unidad de Hipertensión y Lípidos del Hospital Universitario Virgen del Rocío, Sevilla, España.
Background: A decreased content of n-3 fatty acids in erythrocyte membrane of type 1 diabetic patients, which is inversely related to plasma levels of HbA(1c), has been reported previously. Our aim in this study was to observe the changes after a low-dose n-3 fatty acid (330 mg/day docosahexaenoic acid and 630 mg/day eicosapentanoic acid) dietary intervention in the lipid composition of cell membrane and metabolic control (measured according to plasma HbA(1c) levels). Since changes in both parameters may alter transmembrane sodium transport or influence parameters measuring target organ damage, we also studied the neural conduction quality and activity of four sodium transporters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!