Active robotic filtering is a promising solution for beating heart Totally Endoscopic Coronary Artery Bypass Grafting (TECABG). n this work, we assess the heart motion dynamics using simultaneously igh speed imaging of optical markers attached to the heart, ECG signals and ventilator airflow acquisitions. Our goal is to make an assessment of the heart motion (shape, velocity, acceleration) in order to be able to make more accurate specifications for a dedicated robot that could follow this motion in real-time. Furthermore, using the 2 additional inputs (ECG, airflow), we propose a prediction algorithm of the motion that could be used with a predictive control algorithm to improve the tracking accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/11566489_68DOI Listing

Publication Analysis

Top Keywords

beating heart
8
assessment heart
8
heart motion
8
heart
6
robotized beating
4
heart tecabg
4
tecabg assessment
4
heart dynamics
4
dynamics high-speed
4
high-speed vision
4

Similar Publications

One-week test-retest stability of heart rate variability during rest and deep breathing.

Physiol Meas

January 2025

Department for Psychosomatic Medicine and Psychotherapy, Universitatsklinikum Jena, Philosophenweg 3, Jena, Thüringen, 07743, GERMANY.

Heart rate variability (HRV) is an important indicator of cardiac autonomic function. Given its clinical significance, reliable HRV assessment is crucial. Here, we assessed test-retest stability, as a key aspect of reliability, quantifying the consistency of a measure when repeated under the same conditions.

View Article and Find Full Text PDF

Electrical stimulation of existing three-dimensional bioprinted tissues to alter tissue activities is typically associated with wired delivery, invasive electrode placement, and potential cell damage, minimizing its efficacy in cardiac modulation. Here, we report an optoelectronically active scaffold based on printed gelatin methacryloyl embedded with micro-solar cells, seeded with cardiomyocytes to form light-stimulable tissues. This enables untethered, noninvasive, and damage-free optoelectronic stimulation-induced modulation of cardiac beating behaviors without needing wires or genetic modifications to the tissue solely with light.

View Article and Find Full Text PDF

Effects of In Vivo Contact Force on Pulsed-Field Ablation Efficacy in Porcine Ventricles.

J Cardiovasc Electrophysiol

January 2025

Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.

Background: Pulsed-field ablation (PFA) is an innovative non-thermal method for arrhythmia treatment. The efficacy of various PFA configurations in relation to contact force (CF) has not been well-studied in vivo.

Objectives: This study evaluated the effect of CF on acute bipolar PFA lesions in both a vegetal and an in vivo porcine heart model.

View Article and Find Full Text PDF

Background: The human sensorimotor system can naturally synchronize with environmental rhythms, such as light pulses or sound beats. Several studies showed that different styles and tempos of music, or other rhythmic stimuli, have an impact on physiological rhythms, including electrocortical brain activity, heart rate, and motor coordination. Such synchronization, also known as the "entrainment effect", has been identified as a crucial mechanism impacting cognitive, motor, and affective functioning.

View Article and Find Full Text PDF

Objective: To investigate the clinical efficacy of thoracoscopic minimally invasive surgery with nickel-titanium shape memory alloy wrap bone plate versus rib periosteal internal fixation in patients with multiple rib fractures (MRF) and flail chest.

Methods: A retrospective analysis was performed on 100 patients with MRF and flail chest treated with thoracoscopic minimally invasive surgery and internal fixation with rib fracture preservation between January 2019 and December 2022, including 54 males and 46 females, aged from 20 to 65 years old, with an average age of (38.0±18.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!