Validation and method of comparison for segmentation of magnetic resonance images (MRI) presenting pathology is a challenging task due to the lack of reliable ground truth. We propose a new method for generating synthetic multi-modal 3D brain MRI with tumor and edema, along with the ground truth. Tumor mass effect is modeled using a biomechanical model, while tumor and edema infiltration is modeled as a reaction-diffusion process that is guided by a modified diffusion tensor MRI. We propose the use of warping and geodesic interpolation on the diffusion tensors to simulate the displacement and the destruction of the white matter fibers. We also model the process where the contrast agent tends to accumulate in cortical csf regions and active tumor regions to obtain contrast enhanced T1w MR image that appear realistic. The result is simulated multi-modal MRI with ground truth available as sets of probability maps. The system will be able to generate large sets of simulation images with tumors of varying size, shape and location, and will additionally generate infiltrated and deformed healthy tissue probabilities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2430606 | PMC |
http://dx.doi.org/10.1007/11566465_4 | DOI Listing |
Sci Rep
December 2024
Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada.
Accurate diagnosis of oral lesions, early indicators of oral cancer, is a complex clinical challenge. Recent advances in deep learning have demonstrated potential in supporting clinical decisions. This paper introduces a deep learning model for classifying oral lesions, focusing on accuracy, interpretability, and reducing dataset bias.
View Article and Find Full Text PDFSimpl Med Ultrasound (2024)
October 2024
Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA.
We propose in this paper a texture-invariant 2D keypoints descriptor specifically designed for matching preoperative Magnetic Resonance (MR) images with intraoperative Ultrasound (US) images. We introduce a strategy, where intraoperative US images are synthesized from MR images accounting for multiple MR modalities and intraoperative US variability. We build our training set by enforcing keypoints localization over all images then train a patient-specific descriptor network that learns texture-invariant discriminant features in a supervised contrastive manner, leading to robust keypoints descriptors.
View Article and Find Full Text PDFHeart Rhythm
December 2024
School of Biomedical Engineering and Imaging Sciences, King's College London, UK.
Background: Electrocardiographic imaging (ECGi) is a non-invasive technique for ventricular tachycardia (VT) ablation planning. However, it is limited to reconstructing epicardial surface activation. In-silico pace mapping combines a personalized computational model with clinical electrocardiograms (ECGs) to generate a virtual 3D pace map.
View Article and Find Full Text PDFInt J Biomed Imaging
December 2024
Department of Computer Science & Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE) 576104, Manipal, Karnataka, India.
Generative models, especially diffusion models, have gained traction in image generation for their high-quality image synthesis, surpassing generative adversarial networks (GANs). They have shown to excel in anomaly detection by modeling healthy reference data for scoring anomalies. However, one major disadvantage of these models is its sampling speed, which so far has made it unsuitable for use in time-sensitive scenarios.
View Article and Find Full Text PDFFront Neurol
December 2024
CLAIM - Charité Lab for AI in Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
Introduction: Radiological scores used to assess the extent of subarachnoid hemorrhage are limited by intrarater and interrater variability and do not utilize all available information from the imaging. Image segmentation enables precise identification and delineation of objects or regions of interest and offers the potential for automatization of score assessments using precise volumetric information. Our study aims to develop a deep learning model that enables automated multiclass segmentation of structures and pathologies relevant for aneurysmal subarachnoid hemorrhage outcome prediction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!