Protein allostery provides mechanisms for regulation of biological function at the molecular level. We present here an investigation of global, ligand-induced allosteric transition in a protein by time-resolved x-ray diffraction. The study provides a view of structural changes in single crystals of Scapharca dimeric hemoglobin as they proceed in real time, from 5 ns to 80 micros after ligand photodissociation. A tertiary intermediate structure forms rapidly (<5 ns) as the protein responds to the presence of an unliganded heme within each R-state protein subunit, with key structural changes observed in the heme groups, neighboring residues, and interface water molecules. This intermediate lays a foundation for the concerted tertiary and quaternary structural changes that occur on a microsecond time scale and are associated with the transition to a low-affinity T-state structure. Reversal of these changes shows a considerable lag as a T-like structure persists well after ligand rebinding, suggesting a slow T-to-R transition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1472499PMC
http://dx.doi.org/10.1073/pnas.0509411103DOI Listing

Publication Analysis

Top Keywords

real time
8
dimeric hemoglobin
8
allosteric action
4
action real
4
time time-resolved
4
time-resolved crystallographic
4
crystallographic studies
4
studies cooperative
4
cooperative dimeric
4
hemoglobin protein
4

Similar Publications

Objectives: Staphylococcus aureus is part of the human microbiota, but at the same time, it is capable of causing a wide range of diseases. Due to the ever-increasing resistance to antimicrobial agents and the existence of methicillin-resistant S. aureus (MRSA) strains, there is a real possibility of carrying even this resistant bacterium, which can subsequently cause a severe infection.

View Article and Find Full Text PDF

A digital twin is a virtual model of a real-world system that updates in real-time. In healthcare, digital twins are gaining popularity for monitoring activities like diet, physical activity, and sleep. However, their application in predicting serious conditions such as heart attacks, brain strokes and cancers remains under investigation, with current research showing limited accuracy in such predictions.

View Article and Find Full Text PDF

High detection rate of parasitic load by qPCR targeting 18S rDNA in blood of patients with active leishmaniasis lesions.

Eur J Clin Microbiol Infect Dis

January 2025

Faculdade de Medicina, Laboratório de Parasitologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil.

This study aimed to standardize qPCR techniques using these molecular markers kDNA and 18S rDNA across three sample types: peripheral blood, guanidine-treated blood, and tissue. The secondary objective is to evaluate the performance of 18S rDNA target in samples from 46 patients with confirmed tegumentary leishmaniasis. After obtaining the standard curve from reference strains with Leishmania, qPCR curves were standardizations and the Cts results of the patient samples were described using abstract measures.

View Article and Find Full Text PDF

Background: Post-inflammatory hyperpigmentation (PIH) is a common cosmetic concern, often leading to significant psychological distress for the patients. With the widespread application of lasers including ablative fractional resurfacing (AFR) with a 10,600 nm CO laser, PIH caused by lasers is becoming increasingly common. But due to the absence of an appropriate animal research model, our understanding of pathophysiological mechanisms and preventive strategies for PIH remains limited.

View Article and Find Full Text PDF

Exploring the synergistic effect of NaOH/NaClO absorbent in a novel wet FGD scrubber to control SOx/NOx emissions.

Environ Monit Assess

January 2025

International Joint Research Center For Green Energy and Chemical Industry, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.

Escalating SOx and NOx emissions from industrial plants necessitates customized scrubbing solutions to improve removal efficiency and tackle cost limitations in existing wet FGD units. This work investigates the real-time intensified removal pathways via an innovative two-stage countercurrent spray tower configuration strategically integrating NaOH (M) and NaOH/NaClO (M/M) to remove SOx and NOx emissions simultaneously from the industrial stack through a comprehensive parametric study of absorbents concentration, reaction temperature, gas flow rate, liquid to gas ratio (F/F), and absorbent showering head. Flue gas stream comprising SO bearing 4500 ppm, SO bearing 300 ppm, 70 ppm NO, and 50 ppm NO brought into contact with two scrubbing solutions as M, and a complex absorbent of M/M at varying respective ratios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!