Imbibition of Swietenia macrophylla (Meliaceae) seeds: the role of stomata.

Ann Bot

Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901-Belo Horizonte, MG, Brazil.

Published: July 2006

Background And Aims: The occurrence of stomata in seed coats is uncommon and there is limited information about their function(s). The aim of this study was to verify the distribution of stomata in seed coats of Swietenia macrophylla and to relate it to the imbibition process and aspects of the structure of the outer integument layers.

Methods: For the structural and ultrastructural studies, the seeds were processed using the usual techniques and studied under light and scanning electron microscopes. Histochemical tests were employed to identify the cell wall composition in the different seed coat portions. To assess the role of the stomata in the imbibition, non-impervious seeds were compared with partially impervious ones, in which only the embryo, median or hilar regions were left free. Further, the apoplastic pathway marker was employed to confirm the role of the stomata as sites of water passage during imbibition.

Key Results: A positive relationship was observed between seed coat thickness and stomata density. The stomata were devoid of movement, with a large pore. They occurred in large numbers in the embryo region and extended with lower frequency towards the wing. Imbibition rates were related to stomata density, suggesting that the stomata act as preferential sites for water entry in the S. macrophylla seeds.

Conclusions: At maturity, the stomata in the seed coat play a significant role in seed imbibition. The data may also infer that these permanently opened stomata have an important role in gas exchange during seed development, aiding embryo respiration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803541PMC
http://dx.doi.org/10.1093/aob/mcl090DOI Listing

Publication Analysis

Top Keywords

role stomata
12
stomata seed
12
seed coat
12
stomata
11
swietenia macrophylla
8
seed coats
8
sites water
8
stomata density
8
seed
7
imbibition
5

Similar Publications

A gene within a single subclade of NCED genes is triggered in response to both, short- and long-term dehydration treatments, in three model dicot species. During dehydration, some plants can rapidly synthesise the stress hormone abscisic acid (ABA) in leaves within 20 min, triggering the closure of stomata and limiting further water loss. This response is associated with significant transcriptional upregulation of Nine-cis-Epoxycarotenoid Dioxygenase (NCED) genes, which encode the enzyme considered to be rate-limiting in ABA biosynthesis.

View Article and Find Full Text PDF

Phosphorus (P) deficiency is a critical factor limiting crop productivity, primarily due to its detrimental effects on photosynthesis and dry matter accumulation. In this study, we investigate the role of the rice gene OsPHT2;1 in mediating chloroplast P homeostasis and its subsequent impact on photosynthetic function under low P conditions. Stomatal conductance is typically positively correlated with net photosynthetic rates; however, P deficiency disrupts this relationship, leading to reduced stomatal opening and diminished photosynthetic efficiency.

View Article and Find Full Text PDF

This study investigates the anatomical adaptations of leaves from two halophyte species, (Forsskal) Asch. and L., in response to pollutants from a cement factory and human activities.

View Article and Find Full Text PDF

Leaf vein, an essential part of leaf architecture, plays significant roles in shaping the proper leaf size. To date, the molecular mechanisms governing leaf development including leaf venation patterning remains poorly understood in birch. Here, we performed the genome-wide identification of homeodomain-like (HD-like) superfamily genes using phylogenetic analysis and revealed the functional role of a potential HD-like gene in leaf growth and development using transgenic technology and transcriptomic sequencing.

View Article and Find Full Text PDF

Comparative Foliar Atmospheric Mercury Accumulation across Functional Types in Temperate Trees.

Environ Sci Technol

January 2025

State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.

Vegetation assimilation of atmospheric gaseous elemental mercury (GEM) represents the largest dry deposition pathway in global terrestrial ecosystems. This study investigated Hg accumulation mechanisms in deciduous broadleaves and evergreen needles, focusing on how ecophysiological strategies─reflected by δC, δO, leaf mass per area, and leaf dry matter content-mediated Hg accumulation. Results showed that deciduous leaves exhibited higher total Hg (THg) concentrations and accumulation rates (THg), which were 85.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!