Salt- and light-induced changes in morpho-anatomical, physiological and biochemical traits were analysed in Myrtus communis and Pistacia lentiscus with a view to explaining their ecological distribution in the Mediterranean basin. In plants exposed to 20 or 100% solar radiation and supplied with 0 or 200 mm NaCl, measurements were conducted for ionic and water relations and photosynthetic performance, leaf morpho-anatomical and optical properties and tissue-specific accumulation of tannins and flavonoids. Net carbon gain and photosystem II (PSII) efficiency decreased less in P. lentiscus than in M. communis when exposed to salinity stress, the former having a superior ability to use Na(+) and Cl(-) for osmotic adjustment. Morpho-anatomical traits also allowed P. lentiscus to protect sensitive targets in the leaf from the combined action of salinity stress and high solar radiation to a greater degree than M. communis. Salt and light-induced increases in carbon allocated to polyphenols, particularly to flavonoids, were greater in M. communis than in P. lentiscus, and appeared to be related to leaf oxidative damage. Our data may conclusively explain the negligible distribution of M. communis in open Mediterranean areas suffering from salinity stress, and suggest a key antioxidant function of flavonoids in response to different stressful conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1469-8137.2006.01723.x | DOI Listing |
Clin Kidney J
January 2025
Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
The mineralocorticoid receptor (MR) is a nuclear transcription factor that plays a critical role in regulating fluid, electrolytes, blood pressure, and hemodynamic stability. In conditions such as chronic kidney disease (CKD) and heart failure (HF), MR overactivation leads to increased salt and water retention, inflammatory and fibrotic gene expression, and organ injury. The MR is essential for transcriptional regulation and is implicated in metabolic, proinflammatory, and pro-fibrotic pathways.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, China.
The Jacalin-related lectins () gene family play a crucial role in regulating plant development and responding to environmental stress. However, a systematic bioinformatics analysis of the gene family in Gramineae plants has been lacking. In this study, we identified 101 JRL proteins from five Gramineae species and classified them into eight distinct clades.
View Article and Find Full Text PDFFront Microbiol
December 2024
The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
Identifying the signatures of intestinal dysbiosis caused by common stresses is fundamental to establishing efficient health monitoring strategies for sea cucumber. This study investigated the impact of six common stress experienced frequently in aquaculture on the growth performance, intestinal homeostasis and microbiota of sea cucumber, including thermal (23°C), hypoosmotic (22‰ salinity), ammonium (0.5 mg/L NH -N), and nitrite (0.
View Article and Find Full Text PDFPhysiol Plant
January 2025
College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
Salt is a major abiotic factor significantly affecting plant growth and development. Alfalfa (Medicago sativa L.), a crucial perennial crop for livestock feed, shows significant differences in salt tolerance among different varieties.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
Collage of Arts and Sciences, Qatar University, Doha, Qatar.
Enhancing salt tolerance genetically through defining the genetic and physiological mechanisms intergenerational and transgenerational stress memory that contributes to sustainable agriculture by reducing the reliance on external inputs such as irrigation and improving the adaptability of barley to changing climate conditions. Salinity stress poses a substantial challenge to barley production worldwide, adversely affecting crop yield, quality, and agricultural sustainability. To address this, the present study utilized a genome-wide association san (GWAS) to identify genetic associations underlying intergenerational and transgenerational stress memory in response to salinity in a diverse panel of 138 barley accessions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!