Effect of stealthy liposomal topotecan plus amlodipine on the multidrug-resistant leukaemia cells in vitro and xenograft in mice.

Eur J Clin Invest

School of Pharmaceutical Sciences and State Key Laboratory of Natural and Biometic Drugs, Peking University, Beijing, China.

Published: June 2006

Background: Multidrug resistance (MDR) is a major obstacle to successful cancer chemotherapy as the over-expressed MDR protein acts as an efflux pump, which leads to a reduction in the uptake of the anticancer agent by tumour cells. We combined topotecan and amlodipine together into the stealthy liposomes, in which amlodipine was applied as a MDR reversing agent to overcome the resistance.

Materials And Methods: Cytotoxicity, apoptosis and the signalling pathway assays were performed on human chronic myelogenous leukaemia K562, promyelocytic leukaemia HL-60 and MDR HL-60 cells, respectively. Pharmacokinetics and antitumour activity studies were performed on normal Kunming mice and female BALB/c nude mice with MDR HL-60 xenografts, respectively.

Results: Topotecan alone was effective in inhibiting the growth of non-resistant leukaemia cells, K562 and HL-60 cells but not the growth of MDR HL-60 cells. The resistance of topotecan in MDR HL-60 cells was potently reversed by the addition of amlodipine. Moreover, amlodipine enhanced the apoptosis-inducing effect of topotecan synergistically. Apoptosis was through activating caspases in a cascade: first, the initiator caspase 8 and then effectors caspase 3/7 (total activity of caspases 3 and 7) were activated. Being encapsulated into the stealthy liposomes with an acidic internal medium, topotecan existed dominantly in an active lactone species, which was reversibly changed from an inactive carboxylate form via a pH-dependent reaction. After administration of stealthy liposomes to mice, the blood exposure of the lactone form was evidently increased and extended. The antitumour effects in the MDR HL-60 xenografted tumour were stealthy liposomal topotecan (SLT) plus amlodipine > SLT > un-encapsulated topotecan > blank control.

Conclusions: The enhanced antitumour activity in the MDR HL-60 cells by the SLT plus amlodipine could be owing to multiple reasons: (a) synergistic apoptosis inducing effect, (b) reversing MDR by amlodipine and (c) increasing the availability of active lactone of topotecan by the stealthy liposomes. The apoptosis induced by amlodipine is through caspase 8 and then the 3/7 signalling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2362.2006.01643.xDOI Listing

Publication Analysis

Top Keywords

mdr hl-60
24
hl-60 cells
20
stealthy liposomes
16
mdr
10
topotecan
9
amlodipine
9
stealthy liposomal
8
liposomal topotecan
8
topotecan amlodipine
8
cells
8

Similar Publications

Vesicle-Transported Multidrug Resistance as a Possible Therapeutic Target of Natural Compounds.

Pharmaceuticals (Basel)

October 2024

Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy.

Background/objectives: A key role of extracellular vesicles (EVs) is mediating both cell-cell and cell-stroma communication in pathological/physiological conditions. EVs from resistant tumor cells can transport different molecules like P-glycoprotein (P-gp), acting as a shuttle between donor and recipient cells, resulting in a phenotypic change. The aim of our work was to isolate, characterize, and inhibit the release of EVs in two multidrug resistance (MDR) cancer models: MCF-7R (breast cancer cell line) and HL-60R (acute myeloid leukemia cell line).

View Article and Find Full Text PDF

Introduction: Omacetaxine, a semisynthetic form of Homoharringtonine (HHT), was approved for the treatment of Chronic Myeloid Leukemia (CML). Previously, we have published the synthesis of this natural alkaloid and three of its derivatives: Deoxyharringtonine (DHT), Deoxyhomoharringtonine (DHHT), and Bis(demethyl)-deoxyharringtonine (BDHT), and reported its refractory activity against the HL-60/RV+ cells over-expressing P-glycoprotein 1 (MDR1).

Methods: In this study, we have explored the extent of this resistance by first expanding the panel of established cell lines and using a panel of 21 leukemia patient-derived primary cells.

View Article and Find Full Text PDF

Background: This study aimed to explore the effect and mechanism of SCN5A overcoming ATP-binding cassette (ABC) transporter-mediated multidrug resistance (MDR) in acute myeloid leukemia (AML) through promoting apoptosis.

Research Design And Methods: The tissues derived from AML patients were divided into Sensitive group and Resistance group according to the presence of drug-resistance. Human AML cell line HL-60 and drug-resistant strain HL-60/ADR were divided into HL-60/ADR-vector group, HL-60/ADR-SCN5A group, HL-60-vector group and HL-60-SCN5A group.

View Article and Find Full Text PDF

Multidrug resistance (MDR), having a multifactorial nature, is one of the major clinical problems causing the failure of anticancer therapy. The aim of this study was to examine the antitumour effects of selected pyridinium salts, 1-methyl-3-nitropyridine chloride (MNP) and 3,3,6,6,10-pentamethyl-3,4,6,7-tetrahydro-[1,8(2H,5H)-dion]acridine chloride (MDION), on sensitive leukaemia HL60 cells and resistant topoisomerase II-defective HL60/MX2 cells. Cell growth was determined by the MTT test.

View Article and Find Full Text PDF

Establishing and characterizing a novel doxorubicin-resistant acute myeloid leukaemia cell line.

J Chemother

July 2023

i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.

Article Synopsis
  • Drug resistance in cancer, particularly in acute myeloid leukaemia (AML), creates a need for new models to study the mechanisms behind it.
  • Researchers developed a resistant cell line (HL60-CDR) from the sensitive HL60 line by exposing it to increasing doses of doxorubicin, confirming its multidrug resistance (MDR) to several chemotherapeutic agents.
  • The HL60-CDR cells showed changes in cell cycle, DNA repair pathways, and increased levels of oncogenic proteins, thus providing a valuable model for testing new treatments to overcome MDR in AML.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!