Hippocampal place cells can process the environmental inputs and make up a cognitive map in the hippocampus, or strengthen the synaptic connections within an association cortical cell assembly,thus creating a permanent engram for a spatial site. Outputs from the hippocampus are then integrated with other inputs within the nucleus accumbens and finally initiate a goal-directed behavior through the motor circuit.
Download full-text PDF |
Source |
---|
Hippocampus
January 2025
Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York, USA.
In 1979, I joined Jim Ranck's group in Brooklyn and began recording hippocampal neurons. The first project was to record single neurons across three behaviors in different chambers: pellet retrieval on a radial-arm maze, bar-pressing for food reward in an operant chamber, and maternal pup-retrieval in a large home box. We found spatial firing in all three chambers, with a single-neuron's firing pattern unpredictable from one chamber to the next.
View Article and Find Full Text PDFJ Med Chem
December 2024
Medicines Discovery Institute, School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
LIMKs are serine/threonine and tyrosine kinases responsible for controlling cytoskeletal dynamics as key regulators of actin stability, ensuring synaptic health through normal synaptic bouton structure and function. However, LIMK1 overactivation results in abnormal dendritic synaptic development that characterizes the pathogenesis of Fragile X Syndrome (FXS). As a result, the development of LIMK inhibitors represents an emerging disease-modifying therapeutic approach for FXS.
View Article and Find Full Text PDFHippocampus
January 2025
School of Psychology & Neuroscience, University of Glasgow, Glasgow, UK.
I have been incredibly fortunate to have worked in the field of hippocampal spatial coding during three of its most exciting decades, the 1990s, 2000s, and 2010s. During this time I had a ringside view of some of the foundational discoveries that were made which have transformed our understanding of the hippocampal system and its role in cognition (especially spatial cognition) and memory. These discoveries inspired me in my own lab over the years to pursue three broad lines of enquiry-3D spatial encoding, context and the sense of direction-which are outlined here.
View Article and Find Full Text PDFBMC Neurol
December 2024
Laboratory for Epilepsy Research, KU Leuven, Belgium.
Background: Neuronal hyperexcitability has been proposed to play a key role in Alzheimer's disease (AD). Understanding the relation between this enhanced excitability and AD pathology could provide a window for therapeutic interventions. However epileptiform activity is often subclinical, hidden on scalp EEG and very challenging to assess with current diagnostic modalities.
View Article and Find Full Text PDFNature
December 2024
Department of Neuroscience, Columbia University, New York, NY, USA.
A central question in neuroscience is how synaptic plasticity shapes the feature selectivity of neurons in behaving animals. Hippocampal CA1 pyramidal neurons display one of the most striking forms of feature selectivity by forming spatially and contextually selective receptive fields called place fields, which serve as a model for studying the synaptic basis of learning and memory. Various forms of synaptic plasticity have been proposed as cellular substrates for the emergence of place fields.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!