A bold new effort to disrupt every gene in the mouse genome necessitates systematic, interdisciplinary approaches to analyzing patterning defects in the mouse embryo. We present a novel, rapid, and inexpensive method for obtaining high-resolution virtual histology for phenotypic assessment of mouse embryos. Using osmium tetroxide to differentially stain tissues followed by volumetric X-ray computed tomography to image whole embryos, isometric resolutions of 27 mum or 8 mum were achieved with scan times of 2 h or 12 h, respectively, using mid-gestation E9.5-E12.5 embryos. The datasets generated by this method are immediately amenable to state-of-the-art computational methods of organ patterning analysis. This technique to assess embryo anatomy represents a significant improvement in resolution, time, and expense for the quantitative, three-dimensional analysis of developmental patterning defects attributed to genetically engineered mutations and chemically induced embryotoxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1449902 | PMC |
http://dx.doi.org/10.1371/journal.pgen.0020061 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!