Heterotachy in mammalian promoter evolution.

PLoS Genet

Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.

Published: April 2006

We have surveyed the evolutionary trends of mammalian promoters and upstream sequences, utilising large sets of experimentally supported transcription start sites (TSSs). With 30,969 well-defined TSSs from mouse and 26,341 from human, there are sufficient numbers to draw statistically meaningful conclusions and to consider differences between promoter types. Unlike previous smaller studies, we have considered the effects of insertions, deletions, and transposable elements as well as nucleotide substitutions. The rate of promoter evolution relative to that of control sequences has not been consistent between lineages nor within lineages over time. The most pronounced manifestation of this heterotachy is the increased rate of evolution in primate promoters. This increase is seen across different classes of mutation, including substitutions and micro-indel events. We investigated the relationship between promoter and coding sequence selective constraint and suggest that they are generally uncorrelated. This analysis also identified a small number of mouse promoters associated with the immune response that are under positive selection in rodents. We demonstrate significant differences in divergence between functional promoter categories and identify a category of promoters, not associated with conventional protein-coding genes, that has the highest rates of divergence across mammals. We find that evolutionary rates vary both on a fine scale within mammalian promoters and also between different functional classes of promoters. The discovery of heterotachy in promoter evolution, in particular the accelerated evolution of primate promoters, has important implications for our understanding of human evolution and for strategies to detect primate-specific regulatory elements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1449885PMC
http://dx.doi.org/10.1371/journal.pgen.0020030DOI Listing

Publication Analysis

Top Keywords

promoter evolution
12
mammalian promoters
8
evolution primate
8
primate promoters
8
promoters associated
8
promoters
7
promoter
6
evolution
6
heterotachy mammalian
4
mammalian promoter
4

Similar Publications

Bombyx mori bidensovirus (BmBDV), a significant pathogen in the sericulture industry, holds a unique taxonomic position due to its distinct segmented single-stranded DNA (ssDNA) genome and the presence of a self-encoding DNA polymerase. However, the functions of viral non-structural proteins, such as NS2, remain unknown. This protein is hypothesized to play a role in viral replication and pathogenesis.

View Article and Find Full Text PDF

Unraveling TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR Transcription Factors in Safflower: A Blueprint for Stress Resilience and Metabolic Regulation.

Molecules

January 2025

Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China.

Safflower ( L.), a versatile medicinal and economic crop, harbors untapped genetic resources essential for stress resilience and metabolic regulation. The TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors, exclusive to plants, are pivotal in orchestrating growth, development, and stress responses, yet their roles in safflower remain unexplored.

View Article and Find Full Text PDF

Identification of Gene Family and Expression Analysis of Salt Tolerance in .

Int J Mol Sci

January 2025

Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland Science, Inner Mongolia Agricultural University, Hohhot 010010, China.

is one of the typical ecological grass species, characterized by its strong salt tolerance. Hexokinase (HXK) plays a crucial role in plant growth, development, and resistance to abiotic stresses. To understand the function of in the salt tolerance of , this study identified and analyzed the gene family members using the whole-genome data of .

View Article and Find Full Text PDF

Phytochrome-interacting factors (PIFs) play a crucial role in regulating plant growth and development. However, studies on soybean PIFs are limited. Here, we identified 22 GmPIF genes from the soybean genome and classified the GmPIF proteins into 13 subfamilies based on amino acid sequence homology, secondary and tertiary structures, protein structure, and conserved motifs.

View Article and Find Full Text PDF

Genome-Wide Identification, Phylogenetic Evolution, and Abiotic Stress Response Analyses of the Late Embryogenesis Abundant Gene Family in the Alpine Cold-Tolerant Medicinal Species.

Int J Mol Sci

January 2025

Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.

Late embryogenesis abundant (LEA) proteins are a class of proteins associated with osmotic regulation and plant tolerance to abiotic stress. However, studies on the gene family in the alpine cold-tolerant herb are still limited, and the phylogenetic evolution and biological functions of its family members remain unclear. In this study, we conducted genome-wide identification, phylogenetic evolution, and abiotic stress response analyses of family genes in species, alpine cold-tolerant medicinal herbs in the Qinghai-Tibet Plateau and adjacent regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!