Hypoxia-inducible factor-1-dependent and -independent regulation of insulin-like growth factor-1-stimulated vascular endothelial growth factor secretion.

J Pharmacol Exp Ther

Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA.

Published: August 2006

AI Article Synopsis

  • Hypoxia-induced stress significantly contributes to retinal vascular diseases and cancer, largely through the action of hypoxia-inducible factor-1 alpha (HIF-1 alpha) and vascular endothelial growth factor (VEGF) production.
  • IGF-1 was found to stimulate HIF-1 alpha expression and significantly increase VEGF secretion in ARPE-19 retinal pigment epithelial cells, primarily through PI3K/Akt/mTOR pathways.
  • The study concluded that IGF-1 regulates VEGF expression and secretion through both HIF-1-dependent and -independent mechanisms, indicating a complex relationship between these signaling pathways.

Article Abstract

Hypoxia-induced stress plays a central role in retinal vascular disease and cancer. Increased hypoxia-inducible factor-1 alpha (Hif-1 alpha) expression leads to HIF-1 formation and the production of vascular endothelial growth factor (VEGF). Cytokines, including insulin-like growth factor-1 (IGF-1), also stimulate VEGF secretion. In this study, we examined the relationship between IGF-1 signaling, HIF-1 alpha protein turnover and VEGF secretion in the ARPE-19 retinal pigment epithelial cell line. Northern analysis revealed that IGF-1 stimulated Hif-1 alpha message expression, whereas the hypoxia-mimetic CoCl2 did not. CoCl2 treatment increased Hif-1 alpha protein accumulation to a greater extent than IGF-1 treatment. However, IGF-1 stimulated a more significant increase in VEGF secretion. IGF-1-stimulated VEGF promoter activity was phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR (mammalian target of rapamycin)-dependent, whereas VEGF secretion was only partially reduced by inhibition of PI3K/Akt/mTOR and HIF-1 activities. Analysis of VEGF promoter truncation mutants indicated that sensitivity to CoCl2 was hypoxia response element (HRE)-dependent with the region upstream of the HRE conferring IGF-1 sensitivity. In conclusion, IGF-1 regulates VEGF expression and secretion via HIF-1-dependent and -independent pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.106.104158DOI Listing

Publication Analysis

Top Keywords

hif-1 alpha
16
vegf secretion
16
insulin-like growth
8
vascular endothelial
8
endothelial growth
8
growth factor
8
vegf
8
alpha protein
8
igf-1 stimulated
8
vegf promoter
8

Similar Publications

: Following previous findings on high-salt (HS)-intake-related increase of oxidative stress, this study explored whether carnosine (CAR; β-alanyl-L-histidine), a reactive oxygen species (ROS) scavenger, enhanced antioxidative defence and vascular function following HS, potentially via the NRF2 or HIF-1α signalling pathway. : Sprague Dawley rats (64, 8-10 weeks old, both sexes) were divided into four groups (n = 6/group): CTRL (0.4% NaCl), HS (4% NaCl for 7 days), CTRL + CAR (0.

View Article and Find Full Text PDF

Hypoxia Regulates Brown Adipocyte Differentiation and Stimulates miR-210 by HIF-1α.

Int J Mol Sci

December 2024

Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.

MicroRNAs (miRNAs) are short sequences of single-stranded non-coding RNAs that target messenger RNAs, leading to their repression or decay. Interestingly, miRNAs play a role in the cellular response to low oxygen levels, known as hypoxia, which is associated with reactive oxygen species and oxidative stress. However, the physiological implications of hypoxia-induced miRNAs ("hypoxamiRs") remain largely unclear.

View Article and Find Full Text PDF

Neuronal TRPV1-CGRP axis regulates peripheral nerve regeneration through ERK/HIF-1 signaling pathway.

J Neurochem

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Severe trauma frequently leads to nerve damage. Peripheral nerves possess a degree of regenerative ability, and actively promoting their recovery can help restore the sensory and functional capacities of tissues. The neuropeptide calcitonin gene-related peptide (CGRP) is believed to regulate the repair of injured peripheral nerves, with neuronal transient receptor potential vanilloid type 1 (TRPV1) potentially serving as a crucial upstream factor.

View Article and Find Full Text PDF

Elevated glucose levels at the fetal-maternal interface are associated with placental trophoblast dysfunction and increased incidence of pregnancy complications. Trophoblast cells predominantly utilize glucose as an energy source, metabolizing it through glycolysis in the cytoplasm and oxidative respiration in the mitochondria to produce ATP. The TGFβ1/SMAD2 signaling pathway and the transcription factors PPARγ, HIF1α, and AMPK are key regulators of cell metabolism and are known to play critical roles in extravillous trophoblast cell differentiation and function.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the most common and lethal type of primary liver cancer, frequently arising from chronic liver injury and inflammation. Despite treatment advancements, HCC prognosis remains poor, emphasizing the need for effective preventive and therapeutic strategies. This study investigates the hepatoprotective and anti-tumor effects of Hongjam, a steamed freeze-dried silkworm powder, in a diethylnitrosamine (DEN) and thioacetamide (TAA)-induced HCC mouse model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!