Purpose: To assess retrospectively a strategy that uses Gamma-Knife radiosurgery (GKR) in the management of patients with brain metastases (BMs) of malignant melanoma (MM).
Methods: GKR without whole-brain radiotherapy (WBRT) was performed for patients with Karnofsky Performance Status (KPS) of 60 or above who harbored 1 to 4 BMs of 30 mm or less and was repeated as often as needed. Survival was assessed in the whole population, whereas local-control rates were assessed for patients with follow-up longer than 3 months.
Results: A total of 221 BMs were treated in 106 patients; 61.3% had a single BM. Median survival from the time of GKR was 5.09 months. Control rate of treated BMs was 83.7%, with 14% of complete response (14 BMs), 42% of partial response (41 BMs), and 43% of stabilization (43 BMs). In multivariate analysis, survival prognosis factors retained were KPS greater than 80, cortical or subcortical location, and Score Index for Radiosurgery (SIR) greater than 6. On the basis of KPS, BM location, and age, a score called MM-GKR, predictive of survival in our population, was defined.
Conclusion: Gamma-Knife radiosurgery provides a surgery-like ability to obtain control of a solitary BM and could be consider as an alternative treatment to the combination of GKR+WBRT as a palliative strategy. MM-GKR classification is more adapted to MM patients than are SIR, RPA and Brain Score for Brain Metastasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijrobp.2006.01.024 | DOI Listing |
Cureus
December 2024
Radiation Oncology, All India Institute of Medical Sciences, Jodhpur, Jodhpur, IND.
Introduction: Brain arteriovenous malformations (AVM) are complex vascular pathologies with a significant risk of hemorrhage. Stereotactic radiosurgery (SRS) is an effective treatment modality for AVM, initially popularized on the Gamma Knife (Elekta AB, Stockholm, Sweden) platform, and now benefits from the modern advances in linear accelerator (LINAC)-based platforms. This study evaluates the outcomes of LINAC-based SRS/hypofractionated stereotactic radiotherapy (hFSRT) for cerebral AVMs.
View Article and Find Full Text PDFColorectal Dis
January 2025
Digestive Surgery and Liver Transplantation Unit, Archet 2 Hospital, Centre Hospitalier Universitaire de Nice, Nice, France.
Aim: The lungs represent the second most common site of colorectal cancer metastases. Although surgery is commonly considered the best treatment, many other invasive and noninvasive procedures and treatments have been adopted to improve patient survival and there is no clear evidence in the literature of which is the more effective. The aim of this work was to identify which treatment confers the best gain in overall survival for patients with pulmonary metastases from colorectal cancer.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
Purpose: To evaluate the safety and efficacy of Helical Tomotherapy stereotactic body radiotherapy (HT-SBRT) in treating multiple primary lung cancers (MPLCs) and second primary lung cancer (SPLC).
Methods: From January 2010 to September 2023, 106 MPLCs and SPLC (T1-3N0M0) underwent HT-SBRT. The cumulative incidence for local recurrence (LR) was calculated using the competing risk approach and compared using Gray's test.
J Clin Neurosci
January 2025
Department of Neurological Surgery and Rosa Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University. Electronic address:
Background And Objective: Radiosurgery can serve as a primary, adjuvant, or salvage treatment modality for cavernous sinus tumors (CST), providing high tumor control. However, particularly with cavernous sinus expansion, there may be insufficient distance from the optic apparatus to perform radiosurgery safely. The internal carotid artery adjacent to the distal dural ring (ICAddr), when enhancing similarly to the CST, can be difficult to delineate, and can lead to over-contouring of target volume near the optic nerve and therefore increasing the risk of radiation-induced optic toxicity.
View Article and Find Full Text PDFWorld Neurosurg
January 2025
Departments of Neurosurgery, Los Angeles, California, USA; Radiation Oncology, Los Angeles, California, USA; Head and Neck Surgery, Los Angeles, California, USA; Jonsson Comprehensive Cancer Center, Los Angeles, California, USA; Los Angeles Biomedical Research Institute, Los Angeles, California, USA; Harbor-UCLA Medical Center, Los Angeles, California, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!