Phosphate analogues as probes of the catalytic mechanisms of MurA and AroA, two carboxyvinyl transferases.

Biochemistry

Department of Chemistry, Antimicrobial Research Centre, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada.

Published: May 2006

The role in catalysis of phosphate with AroA (enolpyruvyl shikimate 3-phosphate synthase) and MurA (enolpyruvyl UDP-GlcNAc synthase) was probed using phosphate analogues and an AroA mutant. Phosphate, the second reaction product, increases the reactivity of the enolpyruvyl products (EP-OR's) approximately 10(5)-fold in the reverse reaction, forming phosphoenolpyruvate and R-OH (shikimate 3-phosphate or UDP-GlcNAc). Phosphate is intrinsically unreactive with EP-OR, raising the question of how AroA and MurA promote EP-OR reactivity. Eleven phosphate analogues were examined. All those with tetrahedral geometries bound with AroA, except sulfate, while no nontetrahedral analogues did. Arsenate, vanadate, and fluorophosphate caused reactions of AroA and MurA with EP-OR's, yielding pyruvate and R-OH. Their k(cat)/K(M) values relative to phosphate were similar for both enzymes, ca. 100-fold worse for arsensate, 200-fold worse for vanadate, and 5000-fold worse for fluorophosphate, implying similar interactions with both enzymes. Examination of the arsenate-promoted reactions using [3'-(3)H]EP-OR's, (2)H(2)O, and H(2)(18)O provided evidence of an arseno-tetrahedral intermediate, analogous to the natural tetrahedral intermediate, proceeding to arsenoenolpyruvate, which spontaneously broke down to pyruvate and arsenate. The only physicochemical property that appeared to be essential for reactivity of the analogues was the presence of a proton. Titration of the intrinsic tryptophan fluorescence of the weakly active AroA mutant, Asp313Ala (D313A), demonstrated a fluorescence decrease upon enolpyruvyl shikimate 3-phosphate (EPSP) binding, and a further decrease upon binding of phosphate or arsenate to AroA_D313A.EPSP, suggesting a further conformational change. We are hopeful that understanding enzyme-phosphate interactions will make it possible to design inhibitors that can use the high endogenous phosphate concentration in bacteria to enhance inhibitor binding.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi0601914DOI Listing

Publication Analysis

Top Keywords

phosphate analogues
12
shikimate 3-phosphate
12
phosphate
9
enolpyruvyl shikimate
8
aroa mutant
8
aroa mura
8
aroa
7
analogues probes
4
probes catalytic
4
catalytic mechanisms
4

Similar Publications

Objectives: Spingosine-1-phosphate (S1P) and ceramides are bioactive sphingolipids that influence cancer cell fate. Anti-ceramide antibodies might inhibit the effects of ceramide. The aim of this study was to assess the potential role of circulating S1P and anti-ceramide antibody as biomarkers in non-small cell lung cancer (NSCLC).

View Article and Find Full Text PDF

Synthesis and biofilm inhibitory activity of cyclic dinucleotide analogues prepared with macrocyclic ribose-phosphate skeleton.

Bioorg Med Chem Lett

January 2025

Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China. Electronic address:

Cyclic diguanosine monophosphate (c-di-GMP) is the key second messenger regulating bacterial biofilm formation related genes. Several c-di-GMP analogues have demonstrated biofilm inhibition activity. In this study, ribose-phosphate macrocyclic skeleton containing 1'-azido groups was constructed, and CDN analogues were prepared via click chemistry.

View Article and Find Full Text PDF

SAMHD1 shapes deoxynucleotide triphosphate homeostasis by interconnecting the depletion and biosynthesis of different dNTPs.

Nat Commun

January 2025

Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA.

SAMHD1 is a dNTPase that impedes replication of HIV-1 in myeloid cells and resting T lymphocytes. Here we elucidate the substrate activation mechanism of SAMHD1, which involves dNTP binding at allosteric sites and transient tetramerization. Our findings reveal that tetramerization alone is insufficient to promote dNTP hydrolysis; instead, the activation mechanism requires an inactive tetrameric intermediate with partially occupied allosteric sites.

View Article and Find Full Text PDF

A novel phosphate-solubilizing and zinc-solubilizing actinobacterium strain YIM S08009 was isolated from rhizosphere soil collected from Pinus yunnanensis in Wuliangshan National Nature Reserve, Pu'er City, Yunnan Province, southwest PR China. Cells of strain YIM S08009 were Gram-stain-positive, non-motile, irregular rods to cocci, and formed yellow and white colonies on nutrient agar. Growth was observed at 10-40 °C (optimum 25-35 °C), pH 6.

View Article and Find Full Text PDF

Transport and inhibition of the sphingosine-1-phosphate exporter SPNS2.

Nat Commun

January 2025

Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.

Sphingosine-1-phosphate (S1P) is a signaling lysolipid critical to heart development, immunity, and hearing. Accordingly, mutations in the S1P transporter SPNS2 are associated with reduced white cell count and hearing defects. SPNS2 also exports the S1P-mimicking FTY720-P (Fingolimod) and thereby is central to the pharmacokinetics of this drug when treating multiple sclerosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!