Background: Presentation of multiple interactions is of vital importance in the new field of cytomics. Quantitative analysis of multi- and polychromatic stained cells in tissue will serve as a basis for medical diagnosis and prediction of disease in forthcoming years. A major problem associated with huge interdependent data sets is visualization. Therefore, alternative and easy-to-handle strategies for data visualization as well as data meta-evaluation (population analysis, cross-correlation, co-expression analysis) were developed.
Methods: To facilitate human comprehension of complex data, 3D parallel coordinate systems have been developed and used in automated microscopy-based multicolor tissue cytometry (MMTC). Frozen sections of human skin were stained using the combination anti-CD45-PE, anti-CD14-APC, and SytoxGreen as well as the appropriate single and double negative controls. Stained sections were analyzed using automated confocal laser microscopy and semiquantitative MMTC-analysis with TissueQuest 2.0. The 3D parallel coordinate plots are generated from semiquantitative immunofluorescent data of single cells. The 2D and 3D parallel coordinate plots were produced by further processing using the Matlab environment (Mathworks, USA).
Results: Current techniques in data visualization primarily utilize scattergrams, where two parameters are plotted against each other on linear or logarithmic scales. However, data evaluation on cartesian x/y-scattergrams is, in general, only of limited value in multiparameter analysis. Dot plots suffer from serious problems, and in particular, do not meet the requirements of polychromatic high-context tissue cytometry of millions of cells. The 3D parallel coordinate plot replaces the vast amount of scattergrams that are usually needed for the cross-correlation analysis. As a result, the scientist is able to perform the data meta-evaluation by using one single plot. On the basis of 2D parallel coordinate systems, a density isosurface is created for representing the event population in an intuitive way.
Conclusions: The proposed method opens new possibilities to represent and explore multidimensional data in the perspective of cytomics and other life sciences, e.g., DNA chip array technology. Current protocols in immunofluorescence permit simultaneous staining of up to 17 markers. Showing the cross-correlation between these markers requires 136 scattergrams, which is a prohibitively high number. The improved data visualization method allows the observation of such complex patterns in only one 3D plot and could take advantage of the latest developments in 3D imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cyto.a.20288 | DOI Listing |
PNAS Nexus
January 2025
Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01002, USA.
Every protein progresses through a natural lifecycle from birth to maturation to death; this process is coordinated by the protein homeostasis system. Environmental or physiological conditions trigger pathways that maintain the homeostasis of the proteome. An open question is how these pathways are modulated to respond to the many stresses that an organism encounters during its lifetime.
View Article and Find Full Text PDFMicrosyst Nanoeng
January 2025
State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Ministry of Education, 100081, Beijing, China.
Recently, the biologically inspired intelligent artificial visual neural system has aroused enormous interest. However, there are still significant obstacles in pursuing large-scale parallel and efficient visual memory and recognition. In this study, we demonstrate a 28 × 28 synaptic devices array for the artificial visual neuromorphic system, within the size of 0.
View Article and Find Full Text PDFNat Commun
January 2025
Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA.
People living with HIV are at higher risk of heart failure and associated left atrial remodeling compared to people without HIV. Mechanisms are unclear but have been linked to inflammation and premature aging. Here we obtain plasma proteomics concurrently with cardiac magnetic resonance imaging in two independent study populations to identify parallels between HIV-related and aging-related immune dysfunction that could contribute to atrial remodeling and clinical heart failure.
View Article and Find Full Text PDFISA Trans
December 2024
National Key Laboratory of Aerospace Flight Dynamics, School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China. Electronic address:
This paper investigates an integrated model-control scheme for large-scale spacecraft, focusing on orbit-attitude-vibration dynamics subject to strong time-varying coupling characteristics. The proposed scheme aims to achieve cooperative modeling and control for orbit maintenance, attitude stabilization and vibration suppression simultaneously. An integrated dynamic model is established using the Absolute Nodal Coordinate Formulation and Lagrangian mechanics, where time-varying coupling terms are preserved to enhance model integrity, contrasting with the reduction and decoupling methods commonly adopted in existing literature.
View Article and Find Full Text PDFIUCrdata
December 2024
E-35 Holmes Hall, Michigan State University, Lyman Briggs College, 919 E. Shaw Lane, East Lansing, MI 48825, USA.
A layered cobalt coordination polymer containing both 4-(2-carboxyl-atoeth-yl)benzoate (ceb) and 1,4-bis-(3-pyridyl-meth-yl)piperazine (3-bpmp) ligands, [Co(CHO)(CHN)(HO)] or [Co(ceb)(3-bpmp)(HO)] , was isolated and structurally characterized by single-crystal X-ray diffraction. Chain-like [Co(ceb)(HO)] units are oriented parallel to [101]. These are connected into (4,4)-grid coordination polymer layers by tethering 3-bpmp ligands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!