Although the discovery of new classes of antibiotics has lagged behind in the last three decades, the incidence of life-threatening nosocomial infections that are resistant to multiple antibacterial agents has increased steadily. Recent advances in bacterial pathogenicity through the identification of a number of virulence factors and the bacterial genetics behind it have opened the way to a clearer understanding of the pathogen-host relationship. Bacteria communicate with each other through specific signaling chemicals to act as a community rather than individual cells to achieve a critical density or a "quorum." Establishment of quorum is the initiating signal for turning on a variety of virulence factors essential for the pathogenicity and dissemination of pathogens through the host. Pathogenic bacteria use a variety of biochemical mediators, collectively called "virulence factors," to invade and attack host tissues and to avoid detection and elimination by the host immune system. Delineating the specific responses the host immune system elicits in response to specific virulence factors and quorum-sensing molecules is essential to the development of new diagnostic methods for early detection of an infection and the prognosis to a given antibacterial therapy. Identification of inhibitors of virulence factors will represent new antimicrobial therapeutic modalities, and this can be used synergistically with current antibiotic therapy because they act through independent prokaryotic pathways to inhibit bacterial growth and survival.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.BCR.0000216291.68192.54 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!