To investigate the possibilities of two NA inhibitors [oseltamivir carboxylate (OC) and zanamivir (ZA)] as the clinical agents for equine influenza A virus (EIV) infection, we examined the efficacies of these inhibitors against twelve EIVs in vitro. OC and ZA inhibited NA activities of all EIVs with 50% inhibitory concentrations with ranging from 0.017 to 0.130 and from 0.010 to 0.074 microM, respectively. OC and ZA inhibited plaque-forming of all EIVs in MDCK cells with 50% effective concentrations with ranging from 0.015 to 0.097 and from 0.016 to 0.089 microM, respectively, except for one strain (13.328 microM and 6.729 microM). These results suggest that these inhibitors are effective against most EIVs and might be useful for treatment of EI in horses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1292/jvms.68.405 | DOI Listing |
Antiviral Res
December 2024
Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, 422-8526, Japan.
Sci Total Environ
November 2024
Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
Antiviral Res
October 2024
Department of Molecular Medicine, University of Padua, Padua, Italy. Electronic address:
In search of novel therapeutic options to treat influenza virus (IV) infections, we previously identified a series of inhibitors that act by disrupting the interactions between the PA and PB1 subunits of the viral RNA polymerase. These compounds showed broad-spectrum antiviral activity against human influenza A and B viruses and a high barrier to the induction of drug resistance in vitro. In this short communication, we investigated the effects of combinations of the PA-PB1 interaction inhibitor 54 with oseltamivir carboxylate (OSC), zanamivir (ZA), favipiravir (FPV), and baloxavir marboxil (BXM) on the inhibition of influenza A and B virus replication in vitro.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2024
Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden.
We report on the design of heteromultivalent influenza A virus (IAV) receptors based on reversible self-assembled monolayers (SAMs) featuring two distinct mobile ligands. The principal layer building blocks consist of α-(4-amidinophenoxy)alkanes decorated at the ω-position with sialic acid (SA) and the neuraminidase inhibitor Zanamivir (Zan), acting as two mobile ligands binding to the complementary receptors hemagglutinin (HA) and neuraminidase (NA) on the virus surface. From ternary amphiphile mixtures comprising these ligands, the amidines spontaneously self-assemble on top of carboxylic acid-terminated SAMs to form reversible mixed monolayers (rSAMs) that are easily tunable with respect to the ligand ratio.
View Article and Find Full Text PDFJ Enzyme Inhib Med Chem
December 2023
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China.
Our previous studies have shown that the introduction of structurally diverse benzyl side chains at the C5-NH position of oseltamivir to occupy 150-cavity contributes to the binding affinity with neuraminidase and anti-influenza activity. To obtain broad-spectrum neuraminidase inhibitors, we designed and synthesised a series of novel oseltamivir derivatives bearing different N-heterocycles substituents that have been proved to induce opening of the 150-loop of group-2 neuraminidases. Among them, compound bearing 4-(()-2-methylpyrrolidin-1-yl) benzyl group exhibited antiviral activities similar to or weaker than those of oseltamivir carboxylate against H1N1, H3N2, H5N1, H5N6 and H5N1-H274Y mutant neuraminidases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!