A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantitative analysis of brain asymmetry by using the divergence measure: normal-pathological brain discrimination. | LitMetric

Quantitative analysis of brain asymmetry by using the divergence measure: normal-pathological brain discrimination.

Acad Radiol

Agency for Science, Technology and Research (A*STAR), Biomedical Imaging Lab, Matrix, Singapore.

Published: June 2006

Rationale And Objectives: The human brain demonstrates approximate bilateral symmetry of anatomy, function, neurochemical activity, and electrophysiology. This symmetry reflected in radiological images may be affected by pathology. Hence quantitative analysis of brain symmetry may enable the normal and pathological brain discrimination. We propose a method based on the Jeffreys divergence measure (J-divergence), which attempts to quantify "approximate symmetry" and also aids to classify the brain as bilaterally symmetrical/asymmetrical (normal/abnormal).

Materials And Methods: The dataset included studies of 101 patients (59 without detectable pathologies and 42 with different abnormalities). First, the midsagittal plane is computed for the volume data that divides the head into two hemispheres. The J-divergence is calculated from the density functions of intensities of both the hemispheres. Statistical analysis was conducted to find the best distribution for normal/abnormal datasets.

Results: Statistical tests showed that the lognormal distribution best characterizes the values of the J-divergence for both normal and abnormal cases, and the threshold value for the Jeffreys divergence measure to classify the brains with and without detectable pathologies is T = 0.007. The threshold value had a sensitivity of 88.1% and specificity of 90.9%.

Conclusion: The proposed method is fast and simple to compute. The high sensitivity and specificity indicate the results are encouraging. This method can be used for the initial analysis of data, detection of pathology, classification of dataset as presumably normal/abnormal, and localization of abnormality.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acra.2006.01.043DOI Listing

Publication Analysis

Top Keywords

divergence measure
12
quantitative analysis
8
analysis brain
8
brain discrimination
8
jeffreys divergence
8
detectable pathologies
8
brain
6
brain asymmetry
4
asymmetry divergence
4
measure normal-pathological
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!