We recently identified collagen triple helix repeat containing-1 (Cthrc1) as a novel gene induced in adventitial fibroblasts after arterial injury. Cthrc1 is a 30 kDa secreted protein that has the ability to inhibit collagen matrix synthesis. Cthrc1 is also glycosylated and retains a signal sequence consistent with the presence of Cthrc1 in the extracellular space. In injured arteries and skin wounds, we have found Cthrc1 expression to be associated with myofibroblasts and sites of collagen matrix deposition. Furthermore, we demonstrated that Cthrc1 inhibits collagen matrix deposition in vitro. Using in situ hybridization and immunohistochemistry, we characterized the expression domains of Cthrc1 during murine embryonic development and in postnatal tissues. In mouse embryos, Cthrc1 was expressed in the visceral endoderm, notochord, neural tube, developing kidney, and heart. Abundant expression of Cthrc1 was observed in the developing skeleton, i.e., in cartilage primordia, in growth plate cartilage with exclusion of the hypertrophic zone, in the bone matrix and periostium. Bones from adults showed expression of Cthrc1 only in the bone matrix and periostium while the articular cartilage lacked expression. Cthrc1 is typically expressed at epithelial-mesenchymal interfaces that include the epidermis and dermis, basal corneal epithelium, airway epithelium, esophagus epithelium, choroid plexus epithelium, and meninges. In the adult kidney, collecting ducts and distal tubuli expressed Cthrc1. Collectively, the sites of Cthrc1 expression overlap considerably with those reported for TGF-beta family members and interstitial collagens. The present study provides useful information towards the understanding of potential Cthrc1 functions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.modgep.2006.03.008DOI Listing

Publication Analysis

Top Keywords

cthrc1
15
collagen matrix
12
expression cthrc1
12
novel gene
8
collagen triple
8
triple helix
8
helix repeat
8
repeat containing-1
8
containing-1 cthrc1
8
cthrc1 expression
8

Similar Publications

Deep multi-omics integration approach reveals new molecular features of uterine leiomyosarcoma.

Biochim Biophys Acta Mol Basis Dis

December 2024

Universidade Federal do Rio Grande do Norte, IMD, Ppg-Bioinformatica, Natal, Brazil; University of Southern California, Keck School of Medicine, Department of Translational Genomics, 1450 Biggy St., Los Angeles, CA 90089, United States of America. Electronic address:

Uterine leiomyosarcoma (uLMS) is a rare and aggressive cancer representing approximately 25 % of all uterine malignancies. The molecular heterogeneity and pathogenesis of uLMS are not well understood, and translational studies aimed at discovering the vulnerabilities of this tumor type are of high priority. We conducted an innovative comprehensive multi-omics integration study from DNA to protein using freshly frozen tumors.

View Article and Find Full Text PDF

TFAP2A activates CTHRC1 to influence the migration of lung adenocarcinoma cells by modulating fatty acid metabolism.

Prostaglandins Other Lipid Mediat

December 2024

Department of Thoracic Surgery, Anyang Tumor Hospital, Anyang 455000, China. Electronic address:

Background: Tumor metastasis is the main cause of death in lung adenocarcinoma (LAC) patients. It is known that the collagen triple helix repeats containing 1 (CTHRC1) protein is implicated in tissue remodeling and is tightly linked to the carcinogenesis and metastasis of solid tumors. However, the functional role of CTHRC1 and its potential mechanisms in LAC cell metastasis have not been fully explored.

View Article and Find Full Text PDF

The impact of POSTN on tumor cell behavior and the tumor microenvironment in lung adenocarcinoma.

Int Immunopharmacol

January 2025

Department of Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Shandong Academy of Medical Science, Jinan, Shandong, China; Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong, China. Electronic address:

Background: The role of cancer-associated fibroblasts (CAFs) in modulating the anti-tumor immune response in lung adenocarcinoma (LUAD) remains elusive, primarily due to the heterogeneous nature of these cells. This heterogeneity muddles the understanding of their impact on immunotherapy effectiveness.

Methods: We utilized the LUAD single-cell dataset to precisely classify tumor cells and CAFs.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is characterized by the sustained activation of interstitial fibroblasts leading to excessive collagen deposition and progressive organ failure. Epigenetic and metabolic abnormalities have been shown to contribute to the persistent activated state of scar-forming fibroblasts. However, how epigenetic changes regulate fibroblast metabolic responses to promote fibroblast activation and progressive fibrosis remains largely unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Desmoid-type fibromatosis (DTF) is a benign but aggressive tumor caused by persistent activation of fibroblasts, differing from transient activation seen in reactive fibrosis (RF).
  • A comparative analysis of gene expression in DTF and RF tissues revealed over 4,200 genes uniquely expressed in DTF, linked to development and muscle function, while RF genes pertained to immune responses.
  • Key transcription factors associated with DTF were identified, and specific genes showed potential as biomarkers, with TWIST2 outperforming β-catenin as a diagnostic indicator for DTF.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!