A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis and high-throughput evaluation of triskelion uracil libraries for inhibition of human dUTPase and UNG2. | LitMetric

Human nuclear uracil DNA glycosylase (UNG2) and deoxyuridine triphosphate nucleotidohydrolase (dUTPase) are the primary enzymes that prevent the incorporation and accumulation of deoxyuridine in genomic DNA. These enzymes are desirable targets for small molecule inhibitors given their roles in a wide range of biological processes ranging from chromosomal rearrangements that lead to cancer, viral DNA replication, and the formation of toxic DNA strand breaks during anticancer drug therapy. To accelerate the discovery of such inhibitors, we have developed a high-throughput approach for directed library synthesis and screening. In this efficient technology, a uracil-aldehyde ligand is covalently tethered to one position of a trivalent alkyloxyamine linker via an oxime linkage, and then the vacant linker positions are derivatized with a library of aldehydes. The resulting triskelion oximes were directly screened for inhibitory activity and the most potent of these showed micromolar binding affinities to UNG2 and dUTPase.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2006.04.022DOI Listing

Publication Analysis

Top Keywords

synthesis high-throughput
4
high-throughput evaluation
4
evaluation triskelion
4
triskelion uracil
4
uracil libraries
4
libraries inhibition
4
inhibition human
4
human dutpase
4
dutpase ung2
4
ung2 human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!