Anti-proliferative properties of prenylated flavonoids from hops (Humulus lupulus L.) in human prostate cancer cell lines.

Phytomedicine

Ghent University-UGent, Faculty of Pharmaceutical Sciences, Laboratory of Pharmacognosy and Phytochemistry, and Ghent University Hospital, Department of Endocrinology, Belgium.

Published: November 2006

Chalcones xanthohumol (X) and desmethylxanthohumol (DMX), present in hops (Humulus lupulus L.), and the corresponding flavanones isoxanthohumol (IX, from X), 8-prenylnaringenin (8-PN, from DMX), and 6-prenylnaringenin (6-PN, from DMX), have been examined in vitro for their anti-proliferative activity on human prostate cancer cells PC-3 and DU145. X proved to be the most active compound in inhibiting the growth of the cell lines with IC50 values of 12.3+/-1.1 microM for DU145 and 13.2+/-1.1 microM for PC-3. 6-PN was the second most active growth inhibitor, particularly in PC-3 cells (IC50 of 18.4+/-1.2 microM). 8-PN, a highly potent phytoestrogen, exhibited pronounced anti-proliferative effects on PC-3 and DU145 (IC50 of 33.5+/-1.0 and 43.1+/-1.2 microM, respectively), and IX gave comparable activities (IC50 of 45.2+/-1.1 microM for PC-3 and 47.4+/-1.1 microM for DU145). DMX was the least active compound. It was evidenced for the first time that this family of prenylated flavonoids from hops effectively inhibits proliferation of prostate cancer cells in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2006.01.001DOI Listing

Publication Analysis

Top Keywords

prostate cancer
12
prenylated flavonoids
8
flavonoids hops
8
hops humulus
8
humulus lupulus
8
human prostate
8
cell lines
8
cancer cells
8
pc-3 du145
8
active compound
8

Similar Publications

Introduction: Macrophages exhibit marked phenotypic heterogeneity within and across disease states, with lipid metabolic reprogramming contributing to macrophage activation and heterogeneity. Chronic inflammation has been observed in human benign prostatic hyperplasia (BPH) tissues, however macrophage activation states and their contributions to this hyperplastic disease have not been defined. We postulated that a shift in macrophage phenotypes with increasing prostate size could involve metabolic alterations resulting in prostatic epithelial or stromal hyperplasia.

View Article and Find Full Text PDF

Advances in prostate-specific membrane antigen-targeted theranostics: from radionuclides to near-infrared fluorescence technology.

Front Immunol

January 2025

Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.

Prostate-Specific Membrane Antigen (PSMA) is a highly expressed and structurally unique target specific to prostate cancer (PCa). Diagnostic and therapeutic approaches in nuclear medicine, coupling PSMA ligands with radionuclides, have shown significant clinical success. PSMA-PET/CT effectively identifies tumors and metastatic lymph nodes for imaging purposes, while -PSMA-617 (Pluvicto) has received FDA approval for treating metastatic castration-resistant PCa (mCRPC).

View Article and Find Full Text PDF

Background And Purpose: This study assessed the treatment time of online adaptive (i.e. Adapt-to-Shape, ATS) and virtual couch shift (i.

View Article and Find Full Text PDF

Background And Aims: Even though aging is a known risk factor for prostate cancer incidence and mortality, there has been an increase in incidence among young men since the late 1980s with notably lower survival rates than those among older men. However, there is insufficient knowledge about recent trends in the incidence and survival of this disease.

Methods: We analyzed prostatic cancer incidence trends in men under 50 from 1975 to 2020 using Surveillance, Epidemiology, and End Results (SEER) 8 registries data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!