The theoretical 2H-distribution in the aromatic ring of phenylpropanoids can be predicted from that of their precursors--erythrose-4-phosphate, phosphoenolpyruvate and NADPH--and by invoking the mechanism of the NIH-shift and implied deuterium isotope effects. For each position in the non-oxygenated ring, the predicted natural 2H-abundance is in excellent agreement with experimental data obtained from quantitative 2H NMR-measurements on natural compounds, especially concerning the relative 2H-abundances p > o > or = m. For the p-hydroxylated derivatives, the experimentally determined 2H-abundance sequence order m > o can also be deduced, assuming an anisotropic migration (intramolecular isotope effect) of the p-hydrogen atom to the two differently 2H-substituted m-positions during the NIH-shift (intramolecular hydrogen transfer) and an in vivo deuterium kinetic isotope effect of approximately 1.20 on the final hydrogen elimination from the proposed ketodiene intermediate. The predicted 2H-distribution pattern of methyl salicylate 10, a representative of an o-hydroxylated natural compound, is in excellent agreement with that reported from 2H NMR analyses. However, for salicyl alcohol, minor differences between the theoretical and experimentally determined pattern are found that cannot yet be satisfactorily explained. On the other hand, a very good agreement is found between the theoretical and experimental pattern of coumarin, provided a deuterium kinetic isotope effect of approximately 1.30 is assumed for the elimination of the H-atoms from the ketodiene intermediate. The secondary m-hydroxylation of p-coumaric acid in the biosynthesis of vanillin seems to proceed without large isotope effects. Parallel differences are also observed for the 18O-kinetic isotope effects on the corresponding monooxygenase-catalysed reactions. The results demonstrate convincingly that the mechanisms of these general reactions of the phenylpropanoid biosynthetic pathway are identical and follow general principles. Small observed differences between the 2H-patterns of individual natural aromatic compounds originating from the same hydroxylation type can therefore be assigned to differences of the patterns of the precursors, the extent and the orientation of the hydrogen migration, and the kinetic isotope effect on the final hydrogen elimination. The evidence for the existence of general systematic rules governing isotopic patterns in the shikimic acid pathway and its subsequent reactions is further supported by the recently reported 13C-distribution pattern of vanillin, which is also in agreement with that predicted from the precursors. Hence, it is apparent that the systematics of the isotope patterns of phenylpropanoids are in line with the generally accepted biosynthetic reactions in the shikimic acid pathway and that this knowledge can strengthen their value as an essential support for the distinction of natural and synthetic aromatic compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phytochem.2006.03.014 | DOI Listing |
Chemistry
January 2025
Shibaura Institute of Technology: Shibaura Kogyo Daigaku, Applied Chemistry, Fukasaku 307, Minuma-ku, 337-8570, Saitama, JAPAN.
A new Donor-Acceptor type pyrazinacene derivative (1) featuring strong ICT was synthesized by linking electron-donating triphenylamine (TPA) and electron-accepting CN groups via a pyrazinacene core. The compound exhibits a dramatic color change from greenish blue to red-violet upon selective recognition of naphthalene (3) to form a 1:1 co-crystal (1•3). This color change is induced by intermolecular CT between pyrazinacene and naphthalene's aromatic moieties, driven by π-hole···π interactions.
View Article and Find Full Text PDFJ Sep Sci
January 2025
Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.
View Article and Find Full Text PDFMolecules
January 2025
Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all'Adige, TN, Italy.
This study explores the impact of geographical origin, harvest time, and cooking on the volatile organic compound (VOC) profiles of wild and reared seabream from the Adriatic and Tyrrhenian Seas. A Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS) allowed for VOC profiling with high sensitivity and high throughput. A total of 227 mass peaks were identified.
View Article and Find Full Text PDFMolecules
January 2025
College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
The aroma and nutrition of Japanese apricot fruit change continuously as the fruit ripens. The differences in fruit aroma and nutrition can affect the resulting wine, which is produced by steeping the Japanese apricot fruit. In this study, we used HS-SPME-GC-MS to examine the aromatic compositions of Japanese apricot fruit and wine produced from its macerated fruit at different levels of ripeness.
View Article and Find Full Text PDFMolecules
January 2025
Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Gliniana 33 Street, 20-614 Lublin, Poland.
The properties of starch graft poly(cinnamyl methacrylate) copolymers were presented. The "grafting from" method and different ratios of starch to methacrylic monomer were used. The copolymers with the maximum grafting percent (G: 55.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!