Background/purpose: As our understanding of the enteric nervous system improves, it becomes clear that it is no longer sufficient to simply determine whether enteric ganglion cells are present but also to determine whether correct number and types of ganglion cells are present. Nitric oxide is recognized as a potent mediator of inhibitory nerves responsible for the relaxation of the smooth muscle of the gastrointestinal tract. The aim of this study was to determine the normal nitrergic neuronal density and morphology in the submucosal plexus of the porcine distal bowel from fetal life to adulthood.

Methods: Distal large bowel specimens were obtained from porcine fetuses of gestational age E60 (n = 5), E90 (n = 5), 1-day-old piglets (n = 5), 4-week-old piglets (n = 5), 12-week-old piglets (n = 5), and adult pigs (n = 5). Whole-mount preparations of the submucosal plexus were made and stained with NADPH diaphorase histochemistry. The ganglia density, the number of ganglion cells per ganglia, and nucleus and cytoplasmic area were measured.

Results: Ganglia density decreased progressively and markedly with age until the adulthood (P < .001). On the contrary, ganglion cells increased their size over time predominantly because of increase in cytoplasm (P < .001). The number of ganglion cells per ganglia increased significantly during the fetal life. However, there was a significant reduction in the number of ganglion cells per ganglia during the period from birth to 4 weeks, remaining constant thereafter (P < .001).

Conclusions: The quantitative and qualitative morphometric analysis of the colonic submucous plexus shows that significant developmental changes occur during fetal and postnatal life. These findings indicate that the age of the patient is of utmost importance during histopathologic evaluation of enteric nervous system disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpedsurg.2005.12.063DOI Listing

Publication Analysis

Top Keywords

ganglion cells
24
number ganglion
12
cells ganglia
12
developmental changes
8
porcine distal
8
enteric nervous
8
nervous system
8
submucosal plexus
8
fetal life
8
ganglia density
8

Similar Publications

Stem Cell-Based Therapies for Glaucoma Treatment: A Review Bridging the Gap in Veterinary Patients.

Int J Mol Sci

December 2024

Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal.

Retinal diseases are characterized by progressive damage to retinal cells, leading to irreversible vision loss. Among these, glaucoma stands out as a multifactorial neurodegenerative disease involving elevated intraocular pressure, retinal ganglion cell apoptosis, and optic nerve damage, ultimately resulting in blindness in both humans and dogs. Stem cell-based therapies have emerged as a promising therapeutic option for such conditions due to their regenerative and neuroprotective potential.

View Article and Find Full Text PDF

CXCL12 and CXCR4 proteins and mRNAs were monitored in the dorsal root ganglia (DRGs) of lumbar (L4-L5) and cervical (C7-C8) spinal segments of naïve rats, rats subjected to sham operation, and those undergoing unilateral complete sciatic nerve transection (CSNT) on post-operation day 7 (POD7). Immunohistochemical, Western blot, and RT-PCR analyses revealed bilaterally increased levels of CXCR4 protein and mRNA in both lumbar and cervical DRG neurons after CSNT. Similarly, CXCL12 protein levels increased, and CXCL12 mRNA was upregulated primarily in lumbar DRGs ipsilateral to the nerve lesion.

View Article and Find Full Text PDF

Co-targeting of glial activation and inflammation by tsRNA-Gln-i-0095 for treating retinal ischemic pathologies.

Cell Commun Signal

January 2025

Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China.

Ischemic retinopathies are the major causes of blindness, yet effective early-stage treatments remain limited due to an incomplete understanding of the underlying molecular mechanisms. Significant changes in gene expression often precede structural and functional alterations. Transfer RNA (tRNA)-derived small RNAs (tsRNAs) are emerging as novel gene regulators, involved in various biological processes and human diseases.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) typically respond to light stimulation over their spatially restricted receptive field. Using large-scale recordings in the mouse retina, we show that a subset of non- direction-selective (DS) RGCs exhibit asymmetric activity, selective to motion direction, in response to a stimulus crossing an area far beyond the classic receptive field. The extraclassical response arises via inputs from an asymmetric distal zone and is enhanced by desensitization mechanisms and an inherent DS component, creating a network of neurons responding to motion toward the optic disc.

View Article and Find Full Text PDF

Background: Bushen-Huoxue-Mingmu-Formula (MMF) has achieved definite clinical efficacy. However, its mechanism is still unclear.

Objective: Investigating the molecular mechanism of MMF to protect retinal ganglion cells (RGCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!