Mitochondrial dysfunction and oxidative damage are implicated in the pathogenesis of neurodegenerative disease. Mice deficient in the mitochondrial form of superoxide dismutase (SOD2) die during embryonic or early postnatal development, precluding analysis of a pathological role for superoxide in adult tissue. Here, we generated postnatal motor neuron-specific SOD2 knockouts by crossing mice with floxed SOD2 alleles to VAChT-Cre transgenic mice in which Cre expression is restricted to postnatal somatomotor neurons. SOD2 immunoreactivity was specifically lost in a subset of somatomotor neurons resulting in enhanced superoxide production. Yet extensive histological examination revealed no signs of oxidative damage in animals up to 1 year after birth. However, disorganization of distal nerve axons following injury was accelerated in SOD2-deficient motor neurons. These data demonstrate that postnatal motor neurons are surprisingly resistant to oxidative damage from mitochondrial-derived superoxide radicals, but that such damage may sensitize axons to disorganization following nerve injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2006.02.014DOI Listing

Publication Analysis

Top Keywords

postnatal motor
12
motor neurons
12
oxidative damage
12
superoxide dismutase
8
superoxide radicals
8
somatomotor neurons
8
superoxide
6
postnatal
5
neurons
5
conditional knockout
4

Similar Publications

The cerebellum, identified to be active during cognitive and social behavior, has multisynaptic connections through the cerebellar nuclei (CN) and thalamus to cortical regions, yet formation and modulation of these pathways are not fully understood. Perineuronal nets (PNNs) respond to changes in local cellular activity and emerge during development. PNNs are implicated in learning and neurodevelopmental disorders, but their role in the CN during development is unknown.

View Article and Find Full Text PDF

Myosin-VIIA (MYO7A) is an unconventional myosin responsible for syndromic (Usher 1B) or nonsyndromic forms of deafness in humans when mutated. In the cochlea, MYO7A is expressed in hair cells, where it is believed to act as the motor protein tensioning the mechanoelectrical transducer (MET) channels, thus setting their resting open probability (). However, direct evidence for this unique role for an unconventional myosin in mature hair cells is lacking.

View Article and Find Full Text PDF

Background/aim: Congenital diaphragmatic hernia (CDH) is a critical condition affecting newborns, which often results in long-term morbidities, including neurodevelopmental delays, which affect cognitive, motor, and behavioral functions. These delays are believed to stem from prenatal and postnatal factors, such as impaired lung development and chronic hypoxia, which disrupt normal brain growth. Understanding the underlying mechanisms of these neurodevelopmental impairments is crucial for improving prognosis and patient outcomes, particularly as advances in treatments like ECMO have increased survival rates but also pose additional risks for neurodevelopment.

View Article and Find Full Text PDF

NMDA receptor mediated autoimmune encephalitis (NMDAR-AE) frequently results in persistent sensory-motor deficits, especially in children, yet the underlying mechanisms remain unclear. This study investigated the long- term effects of exposure to a patient-derived GluN1-specific monoclonal antibody (mAb) during a critical developmental period (from postnatal day 3 to day 12) in mice. We observed long-lasting sensory-motor deficits characteristic of NMDAR-AE, along with permanent changes in callosal axons within the primary somatosensory cortex (S1) in adulthood, including increased terminal branch complexity.

View Article and Find Full Text PDF

Introduction: The sense of smell is one of the most developed and important senses that forms the bond between the newborn and the mother and allows the newborn to reach the mother's breast. The sense of smell begins to form during intrauterine life, and the sense of smell can be a marking tool for a newborn baby, so that the baby can recognize both his mother and his immediate environment and develop his behaviour accordingly. This is necessary not only for feeding babies but also for them to feel safe and peaceful in their new environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!