Objective: Typically, human ovarian cancer is widely disseminated at the time of diagnosis and shows extremely poor prognosis. Experimental animal models that mimic human ovarian cancer are often incomplete when compared to the full spectrum of the human disease with regard to its histological hallmarks such as the spread of carcinoma, its ability to seed the peritoneal cavity and formation of ascites. We have established and characterized a new animal model for human ovarian cancer in nude mouse.

Methods: A new cell line SKOV-3m was injected intraperitoneally in nude mice. Mice were divided in two groups A and B, which received 1 x 10(7) and 2 x 10(7) cells, respectively. Histology, immunohistochemistry, magnetic resonance imaging and ultrasound were used to analyze tumors.

Results: All mice had tumors within 18 days and histologically they resembled poorly differentiated human cystadenocarcinomas with bloody ascites. Mean survival of the mice was 42+/-14 and 21+/-2 days in groups A and B, respectively. Magnetic resonance imaging and ultrasound were used to confirm the presence of tumors and to monitor their growth without sacrificing the animals.

Conclusion: This new xenograft model accompanied by noninvasive imaging is highly reproducible and likely to be very useful in testing new treatment strategies for ovarian cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygyno.2006.03.030DOI Listing

Publication Analysis

Top Keywords

human ovarian
16
ovarian cancer
16
highly reproducible
8
xenograft model
8
model human
8
magnetic resonance
8
resonance imaging
8
imaging ultrasound
8
human
6
ovarian
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!