A type I restriction-modification enzyme will bind to an unmethylated target sequence in DNA and, while still bound to the target, translocate DNA through the protein complex in both directions. DNA breakage occurs when two translocating complexes collide. However, if type I restriction-modification systems bind to unmodified target sequences within the resident bacterial chromosome, as opposed to incoming 'foreign' DNA, their activity is curtailed; a process known as restriction alleviation (RA). We have identified two genes in Escherichia coli, rnhA and recG, mutations in which lead to the alleviation of restriction. Induction of RA in response to these mutations is consistent with the production of unmodified target sequences following DNA synthesis associated with both homologous recombination and R-loop formation. This implies that a normal function of RA is to protect the bacterial chromosome when recombination generates unmodified products. For EcoKI, our experiments demonstrate the contribution of two pathways that serve to protect unmodified DNA in the bacterial chromosome: the primary pathway in which ClpXP degrades the restriction endonuclease and a mechanism dependent on the lar gene within Rac, a resident, defective prophage of E. coli K-12. Previously, the potential of the second pathway has only been demonstrated when expression of lar has been elevated. Our data identify the effect of lar from the repressed prophage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2958.2006.05144.x | DOI Listing |
Mol Biol (Mosk)
December 2024
Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow oblast, 141707 Russia.
The ArdA DNA-mimic antirestriction proteins inhibit type I restriction-modification (RMI) systems by binding instead of DNA to RMI. The ArdA specificity to DNA methylation sites recognized by RMI complexes remains poorly understood; i.e.
View Article and Find Full Text PDFMicrobiol Spectr
December 2024
Department of Nosocomial Infection Administration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
The clustered regularly interspaced short palindromic repeats (CRISPR)‒CRISPR-associated protein (Cas) and restriction‒modification (R-M) systems are important immune systems in bacteria. Information about the distributions of these two systems in from different hosts and their mutual effect on antibiotic resistance and virulence is still limited. In this study, the whole genomes of 520 strains of from GenBank, including 325 from humans and 195 from animals, were collected for CRISPR‒Cas systems and type I R-M systems, virulence genes, antibiotic resistance genes, and multilocus sequence typing detection.
View Article and Find Full Text PDFMol Oral Microbiol
December 2024
Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
Streptococcus mutans, a key player in dental caries, faces multiple environmental challenges within the oral cavity, including oxidative stress, nutrient scarcity, and acidic pH. To survive and thrive, S. mutans has evolved intricate mechanisms, including the CSP-ComDE quorum sensing system, which coordinates responses to environmental cues.
View Article and Find Full Text PDFInfect Immun
November 2024
Department of Microbiology & Immunology, Reno School of Medicine, University of Nevada, Reno, Nevada, USA.
Serotype M28 isolates of the bacterial pathogen the group A (GAS; ), but not isolates of other serotypes, have a nonrandom association with cases of puerperal sepsis, a life-threatening infection that can occur in women following childbirth. In prior studies, we established that RD2, a pathogenicity island present in all M28 GAS isolates but mostly absent from other serotypes, is a factor in the M28-puerperal sepsis association. Here, we identified a significant reduction in the RD2 conjugation frequency in inter-serotype conjugation assays relative to intra-serotype assays.
View Article and Find Full Text PDFJ Biotechnol
January 2025
Chair of Microbiology, Technical University of Munich, Freising, Germany.
Cellulose from lignocellulosic biomass (LB) is of increasing interest for the production of commodity chemicals. However, its use as substrate for fermentations is a challenge due to its structural complexity. In this context, the highly cellulolytic Clostridium cellulovorans has been considered an interesting microorganism for the breakdown of LB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!