Recent advances in understanding biological systems have proven that RNA is not merely the carrier of genetic information, but also a key molecule in regulation of gene expression and other crucial metabolic processes. Therefore, it is being considered as an ideal therapeutic candidate both for metabolic and genetic disorders. However, research involving RNA molecules faces a practical limitation since RNA is highly labile. We have developed a novel method to protect RNA from cleavage by complexing it with a hyperbranched cationic polymer. It was found that total cellular RNA isolated from yeast spontaneously interacts with the positively charged polymer to form a spherical nanoparticle morphology. This interaction protects the RNA against enzymatic degradation. This methodology can be easily adapted for long-term storage of RNA, long distance transfer of RNA, and genetic engineering using RNA as a building block.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm050999oDOI Listing

Publication Analysis

Top Keywords

rna
11
protect rna
8
rna enzymatic
8
enzymatic degradation
8
water soluble
4
soluble nanoparticles
4
nanoparticles peg-based
4
peg-based cationic
4
cationic hyperbranched
4
hyperbranched polymer
4

Similar Publications

Objective: Endometrial cancer (EC) is a malignant tumor with various histological subtypes and molecular phenotypes. The evaluation of drug resistance is important for cancer treatment. Progesterone resistance is the major challenge in EC.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common malignant primary brain tumor, with a mean survival of less than 2 years. Unique brain structures and the microenvironment, including blood-brain barriers, put great challenges on clinical drug development. Sophoricoside (Sop), an isoflavone glycoside isolated from seeds of Sophora japonica L.

View Article and Find Full Text PDF

Background: Cabotegravir + rilpivirine (CAB + RPV) administered via intramuscular gluteal injections is the first complete long-acting regimen for maintaining human immunodeficiency virus type 1 (HIV-1) virologic suppression. We present substudy results on short-term repeat intramuscular CAB + RPV long-acting thigh injections in participants with ≥3 years of experience with gluteal administration during the ATLAS-2M study.

Methods: Substudy phases included screening, thigh injection (day 1-week 16), and return to gluteal injection (week 16-week 24).

View Article and Find Full Text PDF

Background: Recent studies show that hyperactivation of mTOR (mammalian target of rapamycin) signaling plays a causal role in the development of thoracic aortic aneurysm and dissection. Modulation of PP2A (protein phosphatase 2A) activity has been shown to be of significant therapeutic value. In light of the effects that PP2A can exert on the mTOR pathway, we hypothesized that PP2A activation by small-molecule activators of PP2A could mitigate AA progression in Marfan syndrome (MFS).

View Article and Find Full Text PDF

Type 3 deiodinase activation mediated by the Shh/Gli1 axis promotes sepsis-induced metabolic dysregulation in skeletal muscles.

Burns Trauma

January 2025

Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China.

Background: Non-thyroidal illness syndrome is commonly observed in critically ill patients, characterized by the inactivation of systemic thyroid hormones (TH), which aggravates metabolic dysfunction. Recent evidence indicates that enhanced TH inactivation is mediated by the reactivation of type 3 deiodinase (Dio3) at the tissue level, culminating in a perturbed local metabolic equilibrium. This study assessed whether targeted inhibition of Dio3 can maintain tissue metabolic homeostasis under septic conditions and explored the mechanism behind Dio3 reactivation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!