[Plasma membrane--order or chaos?].

Postepy Biochem

Department of Genetics, Institute of General and Molecular Biology, Nicolaus Copernicus University, 9 Gagarina St., 87-100 Toruń, Poland.

Published: June 2006

In the influential "fluid mosaic" model of plasmalemma, transmembrane proteins drift regardless of lipids. Recently researches widen this to a view in which membrane lipids are not randomly distributed but they form liquid-ordered regions with local heterogenity, called lipid rafts. Lipid rafts are subdomains of the plaSma membrane that contain high concentration of cholesterol and glycosphingolipids. They are 50-100 nm distinct liquid-ordered regions of the membrane that are resistant to extraction with nonionic detergents. They are proposed to function as dynamic lipid assemblies which serve as platforms for protein segregation and signaling, protein and lipid sorting during post-Golgi sorting, dynamic of plasmalemma and virial entry budding. Markers for the lipid rafts are flotillin, GPI - linked proteins, Src family kinases, EGF receptors and G proteins. The lifetime, biological relevance and properties of these domains in vivo are still unclear. However the answers will shape our views of signaling and membrane dynamics.

Download full-text PDF

Source

Publication Analysis

Top Keywords

lipid rafts
12
liquid-ordered regions
8
lipid
5
[plasma membrane--order
4
membrane--order chaos?]
4
chaos?] influential
4
influential "fluid
4
"fluid mosaic"
4
mosaic" model
4
model plasmalemma
4

Similar Publications

Unlabelled: Streptolysin O (SLO) is a virulence determinant of group A (), the agent of streptococcal sore throat and severe invasive infections. SLO is a member of a family of bacterial pore-forming toxins known as cholesterol-dependent cytolysins, which require cell membrane cholesterol for pore formation. While cholesterol is essential for cytolytic activity, accumulating data suggest that cell surface glycans may also participate in the binding of SLO and other cholesterol-dependent cytolysins to host cells.

View Article and Find Full Text PDF

The incidence of brain metastases (BrM) in patients with metastatic melanoma is reported to be 30-50% and constitutes the third most frequent BrM after breast and renal cancers. Treatment strategies including surgical resection, stereotactic radiation, and immunotherapy have improved clinical response rates and overall survival, but the changes that occur in circulating melanoma cells to promote invasion of the brain are not fully understood. To investigate brain tropism, we generated new variants of the B16 mouse melanoma model by serially passaging B16 cells through the brain of immune competent syngeneic C57BL/6 mice.

View Article and Find Full Text PDF

Objective: This study aims to utilize bioinformatics and network pharmacology to identify the active components of Bushen Tiansui decoction (BSTSD) and elucidate its molecular mechanisms and targets in promoting delayed fracture healing.

Materials And Methods: Using various databases and tools, we identified 155 active compounds within BSTSD's herbal components. Key compounds such as eriodictyol and β-sitosterol were noted for their significant anti-inflammatory, antioxidant, and immunomodulatory effects, which are crucial for promoting fracture healing.

View Article and Find Full Text PDF

The shape of biological matter is central to cell function at different length scales and determines how cellular components recognize, interact and respond to one another. However, their shapes are often transient and hard to reprogramme. Here we construct a synthetic cell model composed of signal-responsive DNA nanorafts, biogenic pores and giant unilamellar vesicles (GUVs).

View Article and Find Full Text PDF

Chimeric antigen receptor T cells (CART) targeting CD19 through CD28.ζ signaling induce rapid lysis of leukemic blasts, contrasting with persistent tumor control exhibited by 4-1BB.ζ-CART.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!