The feasibility of using a monolithic column as the analytical column in conjunction with high-flow direct-injection liquid chromatography/tandem mass spectrometry (LC/MS/MS) to increase productivity for quantitative bioanalysis has been investigated using plasma samples containing a drug and its epimer metabolite. Since the chosen drug and its epimer metabolite have the same selected reaction monitoring (SRM) transitions, chromatographic baseline separation of these two compounds was required. The results obtained from this monolithic column system were directly compared with the results obtained from a previously validated assay using a conventional C18 column as the analytical column. Both systems have the same sample preparation, mobile phases and MS conditions. The eluting flow rate for the monolithic column system was 3.2 mL/min (with 4:1 splitting) and for the C18 column system was 1.2 mL/min (with 3:1 splitting). The monolithic column system had a run time of 5 min and the conventional C18 column system had a run time of 10 min. The methods on the two systems were found to be equivalent in terms of accuracy, precision, sensitivity and chromatographic separation. Without sacrificing the chromatographic separation, sensitivity, accuracy and precision of the method, the reduced run time of the monolithic column method increased the sample throughput by a factor of two.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.2494DOI Listing

Publication Analysis

Top Keywords

monolithic column
24
column system
20
c18 column
12
column
11
productivity quantitative
8
quantitative bioanalysis
8
high-flow direct-injection
8
direct-injection liquid
8
liquid chromatography/tandem
8
chromatography/tandem mass
8

Similar Publications

Preparation of halloysite nanotube-based monolithic column for small molecules and protein analysis.

J Chromatogr B Analyt Technol Biomed Life Sci

January 2025

College of Life Science, Hebei Agricultural University, Baoding, Hebei 071001, China; Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei 071001, China; Hebei Agriculture Waste Resource Utilization Engineering Research Center, Baoding, Hebei 071001, China. Electronic address:

s: This study aimed to prepare a new separation medium, silane coupling agent KH570- modified halloysite nanotube (MPS-HNT) monolithic column, with excellent separation performance for small molecular compounds and macromolecular proteins. This was prepared using the principle of redox polymerization with modified HNTs as monomers. The optimal monomer proportion was obtained by optimizing the ratio of monomer, cross-linker, and pore-forming agent, which was evaluated using scanning electron microscopy, nitrogen adsorption, and mercury intrusion.

View Article and Find Full Text PDF

A new composite material with enhanced sorption-selective properties for uranium recovery from liquid media has been obtained. Sorbents were synthesized through a polycondensation reaction of a mixture of 4-amino-N'-hydroxy-1,2,5-oxadiazole-3-carboximidamide (hereinafter referred to as amidoxime) and SiO in an environment of organic solvents (acetic acid, dioxane) and highly porous SiO. To establish optimal conditions for forming the polymer sorption-active part and the synthesis as a whole, a series of composite adsorbents were synthesized with varying amidoxime/matrix ratios (35/65, 50/50, 65/35).

View Article and Find Full Text PDF

Solid-phase microextraction (SPME) is a fast and simple sample preparation technique that enables the enrichment of analytes, and it is used in combination with other detection techniques to provide accurate and sensitive analytical methods. SPME is widely used in environmental monitoring, food safety, life analysis, biomedicine, and other applications. The extractive coating is the core of the SPME technique, and the properties of the extractive coating greatly influence extraction selectivity and efficiency, as well as the enrichment effect.

View Article and Find Full Text PDF

Understanding the interactions between lipid membranes and nucleotide drugs is crucial for nucleic acid therapy. Although several methods have been employed to evaluate nucleotide-lipid membrane interactions, these interactions can be complex; this complexity arises from how external factors, such as ionic strength or temperature, influence the lipid membrane's overall properties. In this study, we prepared a lipid membrane-immobilized monolithic silica (LMiMS) column for high-performance liquid chromatography (HPLC) analysis to understand interactions between the lipid membrane and nucleic acid.

View Article and Find Full Text PDF

Strategy for the co-extraction and simultaneous quantification of organic pollutants and heavy metals by the on-line hyphenation of magnetic field-assisted in-tube solid phase microextraction and chromatographic technique.

J Hazard Mater

January 2025

Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China; College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen 361005, China. Electronic address:

Due to the distinct difference in chemical properties, analysis of organic pollutants and heavy metals generally employs different sample preparation and measurement techniques, resulting in low analytical efficiency and high cost. To this end, a strategy for the co-extraction and then simultaneous quantification of organic pollutants and heavy metals was proposed by the on-line hyphenation of magnetic field-assisted in-tube solid phase microextraction (MA/IT-SPME) and HPLC technique. Simultaneous analysis of triazoles and chromium species were adopted as paradigm to demonstrate the feasibility of the proposed strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!