We investigated the therapeutic potential of a newly developed antifibrotic agent, pirfenidone, to regulate airway remodeling and the development of allergic airway inflammation and airway hyperresponsiveness after chronic allergen challenge. Administration of pirfenidone after sensitization but during the period of ovalbumin challenge significantly prevented the development of airway hyperresponsiveness and prevented eosinophil and lymphocyte accumulation in the airways. IL-4, IL-5, and IL-13 levels in bronchoalveolar lavage fluid and ovalbumin-specific serum IgE antibody levels were also significantly reduced. Treatment with pirfenidone significantly reduced transforming growth factor-beta1 and platelet-derived growth factor levels in bronchoalveolar lavage fluid. Pirfenidone reduced the expression of transforming growth factor-beta1, the development of goblet cell hyperplasia and subepithelial collagenization, and the increases in contractile elements in the lung. These data indicate that pirfenidone may play an important role in the treatment of asthma and has the potential reduce or prevent airway remodeling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2643289 | PMC |
http://dx.doi.org/10.1165/rcmb.2005-0452OC | DOI Listing |
J Inflamm (Lond)
December 2024
Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
The chemokine CCL20, a small cytokine that belongs to the C-C chemokine family, interacts with its homologous receptor CCR6, which is expressed on wide range of cell types. According to current research, the CCL20-CCR6 has been established as acritical player in a diverse range of inflammatory, oncogenic, and autoimmune diseases. Within the respiratory system, CCL20-CCR6 demonstrates heightened expression in conditions such as allergic asthma, chronic airway inflammation, non-small cell lung cancer (NSCLC), chronic obstructive pulmonary disease (COPD), and other respiratory diseases, which is conducive to the inflammatory mediators recruitment and tumor microenvironment remodeling.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
December 2024
Department of Laboratory Medicine, Hengyang First People's Hospital, Hengyang 421001, China.
Objectives: To investigate the protective effect of the probiotic bacterium K12 (K12) against (Mp) infection in mice.
Methods: Forty male BALB/c mice were randomized into normal control group, K12 treatment group, Mp infection group, and K12 pretreatment prior to Mp infection group. The probiotic K12 was administered daily by gavage for 14 days before Mp infection induced by intranasal instillation of Mp.
Cent Eur J Immunol
November 2024
Department of Respiratory Medicine, The Fourth Hospital of Changsha, Changsha, China.
Introduction: Neutrophil autophagy and neutrophil extracellular trap (NET) formation are closely related to asthma pathogenesis. Src homology domain 2-containing protein tyrosine phosphatase 2 (SHP2) is an important regulatory factor in airway remodeling in asthma. This study aimed to explore the molecular mechanisms of SHP2 in neutrophils.
View Article and Find Full Text PDFOpen Respir Arch
November 2024
Department of Pneumology, University Hospital Saint-Luc, Brussels, Belgium.
Ann Am Thorac Soc
December 2024
UZ Leuven, Department of Pediatric Pulmonology, Leuven, Vlaams-Brabant, Belgium;
RATIONALE+OBJECTIVE/ Cystic fibrosis (CF) is characterized by bronchiectasis on imaging, while functionally evolving towards obstructive impairment. Despite its assumed importance in CF, small airway remodeling and its relation to bronchiectasis, is still poorly understood. METHOD/ On high-resolution computed tomography (HRCT, 600µm, CF=21, control=6) and micro-computed tomography (µCT, 150µm, CF=3, control=1) scans of inflated explant lungs, AV% (airway/total lung volume) was calculated as marker for bronchiectasis, while airway segmentation was used for generation analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!