Filopodia are highly dynamic finger-like cell protrusions filled with parallel bundles of actin filaments. Previously we have shown that Diaphanous-related formin dDia2 is involved in the formation of filopodia. Another key player for the formation of filopodia across many species is vasodilator-stimulated phosphoprotein (VASP). It has been proposed that the essential role of VASP for formation of filopodia is its competition with capping proteins for filament barbed-end interaction. To better understand the function of VASP in filopodium formation, we analyzed the in vitro and in vivo properties of Dictyostelium VASP (DdVASP) and extended our findings to human VASP. Recombinant VASP from both species nucleated and bundled actin filaments, but did not compete with capping proteins or block depolymerization from barbed ends. Together with the finding that DdVASP binds to the FH2 domain of dDia2, these data indicate that the crucial role of VASP in filopodium formation is different from uncapping of actin filaments. To identify the activity of DdVASP required in this process, rescue experiments of DdVASP-null cells with mutant DdVASP constructs were performed. Only WT DdVASP, but not a mutant lacking the F-actin bundling activity, could rescue the ability of these cells to form WT-like filopodia. Our data suggest that DdVASP is complexed with dDia2 in filopodial tips and support formin-mediated filament elongation by bundling nascent actin filaments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1457090 | PMC |
http://dx.doi.org/10.1073/pnas.0511243103 | DOI Listing |
mBio
December 2024
Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA.
The alphavirus chikungunya virus (CHIKV) is a serious human pathogen that can cause large-scale epidemics characterized by fever and joint pain and often resulting in chronic arthritis. Infection by alphaviruses including CHIKV and the closely related Semliki Forest virus (SFV) can induce the formation of filopodia-like intercellular long extensions (ILEs). ILEs emanate from an infected cell, stably attach to a neighboring cell, and mediate cell-to-cell viral transmission that is resistant to neutralizing antibodies.
View Article and Find Full Text PDFUnlabelled: Tubular membrane structures are ubiquitous in cells and in the membranes of intracellular organelles such as the Golgi complex and the endoplasmic reticulum. Tubulation plays essential roles in numerous biological processes, including filopodia growth, trafficking, ion transport, and cellular motility. Understanding the fundamental mechanism of the formation of membrane tubes is thus an important problem in the fields of biology and biophysics.
View Article and Find Full Text PDFComput Biol Chem
November 2024
Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu 630 003, India. Electronic address:
Int J Med Sci
December 2024
Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan.
Parasites Hosts Dis
November 2024
Department of Clinical Laboratory Sciences, Arkansas State University, PO Box 910, State University, AR 72467, USA.
Naegleria fowleri, a brain-eating amoeba, thrives in lakes and rivers with aquatic vegetation and causes primary amoebic meningoencephalitis (PAM) in humans. Most recently, it has become such a serious problem that N. fowleri was detected in tap water in Houston, USA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!