N-glycosylation of a mAb may have a major impact on its therapeutic merits. Here, we demonstrate that expression of a hybrid enzyme (called xylGalT), consisting of the N-terminal domain of Arabidopsis thaliana xylosyltransferase and the catalytic domain of human beta-1,4-galactosyltransferase I (GalT), in tobacco causes a sharp reduction of N-glycans with potentially immunogenic core-bound xylose (Xyl) and fucose (Fuc) residues as shown by Western blot and MALDI-TOF MS analysis. A radioallergosorbent test inhibition assay with proteins purified from leaves of WT and these transgenic tobacco plants using sera from allergic patients suggests a significant reduction of potential immunogenicity of xylGalT proteins. A mAb purified from leaves of plants expressing xylGalT displayed an N-glycan profile that featured high levels of galactose, undetectable xylose, and a trace of fucose. Hence, a transgenic plant expressing the hybrid GalT might yield more effective and safer monoclonals for therapeutic purposes than WT plants and even transgenic plants expressing the unchanged GalT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1472489PMC
http://dx.doi.org/10.1073/pnas.0600879103DOI Listing

Publication Analysis

Top Keywords

expressing hybrid
8
purified leaves
8
plants expressing
8
antibody produced
4
produced tobacco
4
expressing
4
tobacco expressing
4
hybrid beta-14-galactosyltransferase
4
beta-14-galactosyltransferase essentially
4
essentially devoid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!