N-(4-hydroxyphenyl)retinamide (4-HPR), a synthetic retinoid is under clinical evaluation as a therapeutic agent in a variety of cancers. Its mechanism(s) of action involves multiple overlapping pathways that still remain unclear. In glioma cells its mechanism of action is not well elucidated. Here, we show that 4-HPR and not all-trans retinoic acid and 9-cis retinoic acid effectively induce apoptosis in glioma cells. 4-HPR-induced apoptosis is associated with hydroperoxide production and loss of mitochondrial membrane potential (Delta Psi(m)). Ultrastructural changes further indicate 4-HPR-induced mitochondrial swelling, endoplasmic reticulum (ER) dilation as well as close proximity of mitochondria and ER. As suggested by dilated ER, 4-HPR treatment increased the free cytosolic Ca(2+) as well as mitochondrial Ca(2+). Chelation of extracellular Ca(2+) by EGTA did not prevent Ca(2+) elevation, thus suggesting involvement of intracellular calcium stores in the release. Buffering of intracellular calcium by BAPTA-AM did not prevent 4-HPR-induced apoptosis; however, blocking the release of Ca(2+) from ER by heparin inhibited apoptosis, indicating the role of depletion of Ca(2+) from ER stores in apoptosis. 4-HPR treatment also resulted in an increase in Bax levels along with its translocation to mitochondria that promote mitochondrial membrane permeabilization. 4-HPR-induced apoptosis was further associated with the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria to cytosol and nucleus, respectively, along with caspase-3 and caspase-7 activation. However, AIF nuclear translocation, peripheral chromatin condensation and apoptosis were not completely prevented by general caspase inhibitors, thus suggesting involvement of a caspase-dependent and caspase-independent pathway in 4-HPR-induced apoptosis. Taken together, these results suggest the role of mitochondrial-mediated pathway and ER stress as a key event in 4-HPR-induced apoptosis in glioma cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/carcin/bgl051 | DOI Listing |
Cancer Chemother Pharmacol
August 2020
Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
Purpose: Inherent and/or acquired multi-drug resistance might be the instigator of treatment failure for acute myeloid leukemia (AML). In the current study, we aimed to explored the chemosensitizing effect of 4-HPR on AML therapy.
Methods: Luciferase reporter assays were used to test the effect of 4-HPR on transcriptional signaling pathways.
Anticancer Res
August 2018
Biochemistry Department, University of Wisconsin-Madison, Madison, WI, U.S.A.
Background/aim: N-(4-hydroxyphenyl)retinamide (4-HPR) is a synthetic retinoid, less toxic than the parent all-trans retinoic acid (RA). Unlike RA, 4-HPR induces apoptosis in tumor cells. Because 4-HPR can hydrolyze to liberate RA, a potent human teratogen, the unhydrolyzable ketone analog of 4-HPR, 4-hydroxybenzylretinone (4-HBR) has been prepared and has been found to cause apoptosis in tumor cells and shrink carcinogen-induced rat mammary tumors as 4-HPR does.
View Article and Find Full Text PDFAntioxid Redox Signal
October 2014
Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China .
Aim: Chemotherapy-induced reactive oxygen species (ROS) not only contribute to apoptosis, but also trigger autophagy. Since autophagy is reported to protect cancer cells from apoptosis, this weakens the therapeutic effect of chemotherapy. This study aimed at identifying the key molecules that determine the cellular response to ROS and, therefore, provide better strategies to increase chemotherapeutic efficiency.
View Article and Find Full Text PDFCancer Chemother Pharmacol
February 2014
Center for Neural Development and Disease, University of Rochester Medical Center, Rochester, NY, 14642, USA.
Purpose: Neuroblastoma is the most common extracranial solid tumor of childhood. The retinoic acid analogue, fenretinide (4-hydroxyphenyl retinamide; 4-HPR), induces apoptosis in neuroblastoma cells in vitro and is currently in clinical trials for children with refractory neuroblastoma. We have previously shown that expression of the p75 neurotrophin receptor (p75NTR) enhances apoptosis induction and mitochondrial accumulation of reactive oxygen species by 4-HPR in neuroblastoma cells.
View Article and Find Full Text PDFPLoS One
January 2013
Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
Background: Fenretinide (4-HPR) is a synthetic retinoid that exhibits potent antitumor and chemopreventive activities against different malignancies, including ovarian tumors. We previously showed that in ovarian cancer cells, 4-HPR induces apoptosis through a signaling cascade starting from reactive oxygen species (ROS) generation and involving endoplasmic reticulum (ER) stress response, Jun N-terminal Kinase (JNK) activation, and induction of the proapoptotic PLAcental Bone morphogenetic protein (PLAB). Since recent studies have shown that the oncogene ALL1-fused from chromosome 1q (AF1q), a retinoic acid target gene, is implicated in apoptosis induction by several therapeutic agents, we investigated its possible involvement in the apoptosis induced by 4-HPR in ovarian cancer cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!