The human major histocompatibility complex class II (MHC-II) region encodes a cluster of polymorphic heterodimeric glycoproteins HLA-DR, -DQ, and -DP that functions in antigen presentation. Separated by approximately 44 kb of DNA, the HLA-DRB1 and HLA-DQA1 encode MHC-II proteins that function in separate MHC-II heterodimers and are diametrically transcribed. A region of high acetylation located in the intergenic sequences between HLA-DRB1 and HLA-DQA1 was discovered and termed XL9. The peak of acetylation coincided with sequences that bound the insulator protein CCCTC-binding factor as determined by chromatin immunoprecipitations and in vitro DNA binding studies. XL9 was also found to be associated with the nuclear matrix. The activity of the XL9 region was examined and found to be a potent enhancer-blocking element. These results suggest that the XL9 region may have evolved to separate the transcriptional units of the HLA-DR and HLA-DQ genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M601298200 | DOI Listing |
Liver Int
February 2025
Liver Disease Research Branch, Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA.
Background And Aims: Short courses of intravenous (iv) methylprednisolone (MP) can cause drug induced liver injury (DILI). The aim of this study was to assess the clinical features and HLA associations of MP-related DILI enrolled in the US DILI Network (DILIN).
Methods: DILIN cases with MP as a suspected drug were reviewed.
Biomedicines
November 2024
Department of Neurology, Pauls Stradiņš Clinical University Hospital, LV-1002 Riga, Latvia.
: Parkinson's disease (PD) is a neurodegenerative disorder characterised by a high prevalence of sporadic cases. Various molecular mechanisms are involved in its pathogenesis. This pilot study aimed to identify potential risk and protective human leukocyte antigen (HLA) alleles in PD, discover candidate alleles for further research, and evaluate potential blood biomarkers.
View Article and Find Full Text PDFHum Immunol
December 2024
Diagnostic Laboratories and Blood Research Institute, Versiti, Milwaukee, WI, USA. Electronic address:
Introduction: Donors for patients requiring hematopoietic cell transplant (HCT) are selected based on matching genetic sequences encoding the antigen recognition domain of specific HLA loci. However, differences in transplant outcomes in fully matched unrelated HCT compared with sibling HCT suggest that other genetic regions within the major histocompatibility complex (MHC) may contribute to HCT outcomes.
Methods: We sequenced the non-classical MHC loci (NCML) HLA-E, -F, -G, -H, MICA and MICB on a well-characterized retrospective cohort of 157 unrelated donor/recipient HCT pairs to determine the extent of MHC mismatching in matched pairs.
Curr Issues Mol Biol
October 2024
Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA.
Autoimmune diseases are among the most prevalent diseases across the world with genetic and environmental factors that contribute to their etiology. Because the exact causes of autoimmune diseases are largely unknown, a Mendelian randomization (MR) approach is used here to examine the potential causal association between gene expression levels and disease risk across various tissues. Specifically, this study focuses on six autoimmune diseases including Crohn's disease, ulcerative colitis, rheumatoid arthritis, multiple sclerosis, type 1 diabetes mellitus, and systemic lupus erythematosus.
View Article and Find Full Text PDFMol Immunol
November 2024
Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, China; Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!